首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taking advantage of the highly permeable vasculature and lack of lymphatic drainage in solid tumors (EPR effect), nanosized drug delivery systems or nanomedicines have been extensively explored for tumor‐targeted drug delivery. However, in most clinical cases tumors such as the early stage tumors and post‐surgery microscopic residual tumors have not yet developed such pathological EPR features, i.e., EPR‐deficient. Therefore, nanomedicines may not be applicable for such these tumors. Macrophages by nature can actively home and extravasate through the tight vascular wall into tumors and migrate to their hypoxic regions, and possess perfect stealth ability for long blood circulation and impressive phagocytosis for drug loadings. Thus, nanomedicines loaded in macrophages would harness both merits and gain the active tumor homing capability independent of the EPR effect for treatments of the EPR‐deficient tumors. Herein, the critical considerations, current progress, challenges and future prospects of macrophages as carriers for nanomedicines are summarized, aiming at rational design of EPR‐independent tumor‐targeting active nanomedicines for targeted early and adjuvant cancer chemotherapy.  相似文献   

2.
铝盐佐剂具有极好的安全记录,是各种人类疫苗中唯一获得FDA许可的无机佐剂。据我们所知,目前尚没有关于将其用作化疗药物的递送系统、并系统阐明其结构与载药性能之间关系的研究报道。本研究采用三嵌段共聚物、通过调节反应时间合成了具有可调比表面积和孔径的氢氧化铝(AlOOH)纳米片。AlOOH纳米片的最大比表面积达470 m2/g。其负载化疗药物阿霉素的能力与材料结构密切相关:比表面积和孔径越大,负载化疗药物的量越大。负载有阿霉素的AlOOH纳米片呈现与pH有关的药物释放行为:在pH~5的低p H环境下快速释放,而在pH~7.4的近中性pH下缓慢释放。流式细胞术显示,相比于游离形式的阿霉素,负载在AlOOH纳米片上的阿霉素更易被癌细胞所吞噬。而且负载阿霉素后,与低比表面积的AlOOH纳米片相比,高比表面积的AlOOH纳米片更有利于被癌细胞摄取、诱导癌细胞凋亡和坏死。因此,本研究所合成的AlOOH纳米片有望用作化疗药物递送体系。  相似文献   

3.
Energy metabolism abnormity is one of the most significant hallmarks of cancer. As a result, large amino acid transporter 1 (LAT1) is remarkably overexpressed in both blood‐brain‐barrier and glioma tumor cells, leading a rapid and sufficient substrate transportation. 3CDIT and 4CDIT are originally synthesized by modifying the existing most potent LAT1 substrate. 3CDIT is selected as its higher glioma‐targeting ability. Since the microenvironment variation in tumor cells is another important feature of cancer, a great disparity in adenosine‐5′‐triphosphate (ATP) and glutathione (GSH) levels between extracellular and intracellular milieu can provide good possibilities for dual‐responsive drug release in tumor cells. Doxorubicin (DOX) is successfully intercalated into the ATP aptamer DNA scaffolds, compressed by GSH‐responsive polymer pOEI, and modified with 3CDIT to obtain 3CDIT‐targeting pOEI/DOX/ATP aptamer nanoparticles (NPs). Enhanced NP accumulation and rapid GSH & ATP dual‐responsive DOX release in glioma are demonstrated both in vitro and in vivo. More efficient therapeutic effects are shown with 3CDIT‐targeting pOEI/DOX/ATP aptamer NPs than free DOX and no systemic toxicity is observed. Therefore, glioma‐targeting delivery and GSH & ATP dual‐responsive release guarantee an adequate DOX accumulation within tumor cells and ensure a safe and efficient chemotherapy for glioma.  相似文献   

4.
Considering the limited clinical benefits of individual approaches against malignancy, natural killer (NK) cell-mediated immunotherapy is increasingly utilized in combination with radiotherapy and target therapeutics. However, the interplay of targeted agents, immunotherapy, and radiotherapy is complex. An improved understanding of the effect of chemotherapy or radiotherapy on specific molecular pathways in immune cells would help to optimize the synergistic antitumor efficiency. In this study, the selenium-containing nanoparticles (NPs) could deliver the chemotherapeutic drug doxorubicin (DOX) to tumor sites by systemic administration. Radiation stimuli facilitate DOX release and enhance chemotherapy efficiency. Moreover, radiation could oxidize diselenide-containing NPs to seleninic acid, which have both synergistic antitumor effect and immunomodulatory activity through enhancing NK cells function. These results indicate that the selenium-containing NPs would be a potential approach to achieve simultaneous treatments of immunotherapy, chemotherapy, and radiotherapy by a simple but effective method.  相似文献   

5.
The combination of photodynamic therapy (PDT) and chemotherapy (chemo-photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non-suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP-activated nanoparticles (CDNPs) that are directly self-assembled from near-infrared photosensitizer (Cy-I) and amphiphilic Cd(II) complex (DPA-Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy-I is capable of producing single oxygen (1O2) for PDT with 808 nm irradiation and DPA-Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor-bearing mice after intravenous injection of CDNPs. This carrier-free nanoparticle offers a new platform for chemo-photodynamic therapy.  相似文献   

6.
Mono-chemotherapy has significant side effects and unsatisfactory efficacy, limiting its clinical application. Therefore, a combination of multiple treatments is becoming more common in oncotherapy. Chemotherapy combined with the induction of ferroptosis is a potential new oncotherapy. Furthermore, polymeric nanoparticles (NPs) can improve the antitumor efficacy and decrease the toxicity of drugs. Herein, a polymeric NP, mPEG-b-PPLGFc@Dox, is synthesized to decrease the toxicity of doxorubicin (Dox) and enhance the efficacy of chemotherapy by combining it with the induction of ferroptosis. First, mPEG-b-PPLGFc@Dox is oxidized by endogenous H2O2 and releases Dox, which leads to an increase of H2O2 by breaking the redox balance. The Fe(II) group of ferrocene converts H2O2 into ·OH, inducing subsequent ferroptosis. Furthermore, glutathione peroxidase 4, a biomarker of ferroptosis, is suppressed and the lipid peroxidation level is elevated in cells incubated with mPEG-b-PPLGFc@Dox compared to those treated with Dox alone, indicating ferroptosis induction by mPEG-b-PPLGFc@Dox. In vivo, the antitumor efficacy of mPEG-b-PPLGFc@Dox is higher than that of free Dox. Moreover, the loss of body weight in mice treated mPEG-b-PPLGFc@Dox is lower than in those treated with free Dox, indicating that mPEG-b-PPLGFc@Dox is less toxic than free Dox. In conclusion, mPEG-b-PPLGFc@Dox not only has higher antitumor efficacy but it reduces the damage to normal tissue.  相似文献   

7.
Glioblastoma (GBM) is the most common lethal brain tumor with dismal treatment outcomes and poor response to chemotherapy. As the regulatory center of cytogenetics and metabolism, most tumor chemotherapeutic molecules exert therapeutic effects in the nucleus. Nanodrugs showing the nuclear aggregation effect are expected to eliminate and fundamentally suppress tumor cells. In this study, a nanodrug delivery system based on polyhedral oligomeric silsesquioxane (POSS) is introduced to deliver drugs into the nuclei of GBM cells, effectively enhancing the therapeutic efficacy of chemotherapy. The nanoparticles are modified with folic acid and iRGD peptides molecules to improve their tumor cell targeting and uptake via receptor-mediated endocytosis. Nuclear aggregation allows for the direct delivery of chemotherapeutic drug temozolomide (TMZ) to the tumor cell nuclei, resulting in more significant DNA damage and inhibition of tumor cell proliferation. Herein, TMZ-loaded POSS nanoparticles can significantly improve the survival of GBM-bearing mice. Therefore, the modified POSS nanoparticles may serve as a promising drug-loaded delivery platform to improve chemotherapy outcomes in GBM patients.  相似文献   

8.
Overcoming transport barriers to delivery of therapeutic agents in tumors remains a major challenge. Focused ultrasound (FUS), in combination with modern nanomedicine drug formulations, offers the ability to maximize drug transport to tumor tissue while minimizing toxicity to normal tissue. This potential remains unfulfilled due to the limitations of current approaches in accurately assessing and quantifying how FUS modulates drug transport in solid tumors. A novel acoustofluidic platform is developed by integrating a physiologically relevant 3D microfluidic device and a FUS system with a closed‐loop controller to study drug transport and assess the response of cancer cells to chemotherapy in real time using live cell microscopy. FUS‐induced heating triggers local release of the chemotherapeutic agent doxorubicin from a liposomal carrier and results in higher cellular drug uptake in the FUS focal region. This differential drug uptake induces locally confined DNA damage and glioblastoma cell death in the 3D environment. The capabilities of acoustofluidics for accurate control of drug release and monitoring of localized cell response are demonstrated in a 3D in vitro tumor mode. This has important implications for developing novel strategies to deliver therapeutic agents directly to the tumor tissue while sparing healthy tissue.  相似文献   

9.
Mitochondrial‐targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin‐loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core–shell–SS–shell architecture are composed of a core of Fe3O4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near‐infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment.  相似文献   

10.
Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting—two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.  相似文献   

11.
Chemotherapy is the mainstream treatment of anaplastic large cell lymphoma (ALCL). However, chemotherapy can cause severe adverse effects in patients because it is not ALCL‐specific. In this study, a multifunctional aptamer‐nanomedicine (Apt‐NMed) achieving targeted chemotherapy and gene therapy of ALCL is developed. Apt‐NMed is formulated by self‐assembly of synthetic oligonucleotides containing CD30‐specific aptamer and anaplastic lymphoma kinase (ALK)‐specific siRNA followed by self‐loading of the chemotherapeutic drug doxorubicin (DOX). Apt‐NMed exhibits a well‐defined nanostructure (diameter 59 mm) and stability in human serum. Under aptamer guidance, Apt‐NMed specifically binds and internalizes targeted ALCL cells. Intracellular delivery of Apt‐NMed triggers rapid DOX release for targeted ALCL chemotherapy and intracellular delivery of the ALK‐specific siRNA induced ALK oncogene silencing, resulting in combined therapeutic effects. Animal model studies reveal that upon systemic administration, Apt‐NMed specifically targets and selectively accumulates in ALCL tumor site, but does not react with off‐target tumors in the same xenograft mouse. Importantly, Apt‐NMed not only induces significantly higher inhibition in ALCL tumor growth, but also causes fewer or no side effects in treated mice compared to free DOX. Moreover, Apt‐NMed treatment markedly improves the survival rate of treated mice, opening a new avenue for precision treatment of ALCL.  相似文献   

12.
13.
Lactic acid (LA) is a powerful molecule as the metabolic driver in tumor microenvironments (TMEs). Inspired by its high intratumoral level (5–20 µmol g?1), a novel treatment paradigm via the cascade release of H2O2 and ·OH from the LA generated by tumor metabolism is developed for catalytic and pH‐dependent selective tumor chemotherapy. By utilizing the acidity and overexpression of LA within the TME, the constructed lactate oxidase (LOD)‐immobilized Ce‐benzenetricarboxylic acid (Ce‐BTC) metal organic framework enables the intratumoral generation of ·OH via a cascade reaction: 1) the in situ catalytic release of H2O2 from LA by LOD, and 2) the catalytic production of ·OH from H2O2 by Ce‐BTC with peroxidase‐like activity. Highly toxic ·OH effectively induces tumor apoptosis/death. A new strategy for selective tumor chemotherapy is provided herein.  相似文献   

14.
The enzyme-mediated elevation of reactive oxygen species(ROS)at the tumor sites has become an emerging strategy for regulating intracellular redox status for anticancer treatment.Herein,we proposed a camouflaged bionic cascaded-enzyme nanoreactor based on Ti3C2nanosheets for combined tumor enzyme dynamic therapy(EDT),phototherapy and deoxygenation-activated chemotherapy.Briefly,glucose oxidase(GOX)and chloroperoxidase(CPO)were chemically conjugated onto Ti3C2nanosheets,where the deoxygenation-activated drug tirapazamine(TPZ)was also loaded,and the Ti3C2-GOX-CPO/TPZ(TGCT)was embedded into nanosized cancer cell-derived membrane vesicles with high-expressed CD47(m_eTGCT).Due to biomimetic membrane camouflage and CD47 overexpression,m_eTGCT exhibited superior immune escape and homologous targeting capacities,which could effectively enhance the tumor preferential targeting and internalization.Once internalized into tumor cells,the cascade reaction of GOX and CPO could generate HClO for efficient EDT.Simultaneously,additional laser irradiation could accelerate the enzymic-catalytic reaction rate and increase the generation of singlet oxygen(~1O2).Furthermore,local hypoxia environment with the oxygen depletion by EDT would activate deoxygenation-sensitive prodrug for additional chemotherapy.Consequently,m_eTGCT exhibits amplified synergistic therapeutic effects of tumor phototherapy,EDT and chemotherapy for efficient tumor inhibition.This intelligent cascaded-enzyme nanoreactor provides a promising approach to achieve concurrent and significant antitumor therapy.  相似文献   

15.
Combination chemotherapy with both hydrophobic and hydrophilic therapeutic drugs is clinically vital toward the treatment of persistent cancers. Though conventional liposomes and polymeric vesicles possessing hydrophobic bilayers and aqueous interiors can serve as codelivery nanocarriers, it remains a considerable challenge to achieve synchronized release of both types of drugs due to distinct encapsulation mechanisms; premature release of water‐soluble cargos from unstable liposomes and ruptured vesicles is also a major concern. Herein, the fabrication of physiologically stable polyprodrug‐gated crosslinked vesicles (GCVs) via the self‐assembly of camptothecin (CPT) polyprodrug amphiphiles and in situ bilayer crosslinking through traceless sol–gel reaction is reported. Polyprodrug‐GCVs possess high CPT loading (>30 wt%) and minimized leakage of encapsulated hydrophilic doxorubicin (DOX) hydrochloride due to the suppressed permeability of crosslinked membrane, exhibiting extended blood circulation (t 1/2 > 13 h) with caged cytotoxicity in physiological circulation. Upon cellular uptake by cancer cells, cytosolic reductive milieu‐triggered CPT unplugging from vesicle bilayers is demonstrated to generate hydrophilic mesh channels and make the membrane highly permeable. Concurrently, it will promote DOX corelease from hydrophilic lumen (≈36‐fold increase). The reduction‐activated combination chemotherapeutic potency based on polyprodrug‐GCVs is confirmed by both in vitro and in vivo explorations.  相似文献   

16.
Novel antitumor system based on the targeting photothermal and pH‐responsive nanocarriers, gold nanoshells coated oleanolic acid liposomes mediating by chitosan (GNOLs), is designed and synthesized for the first time. The GNOLs present spherical and uniform size (172.03 nm) with zeta potential (20.7 ± 0.4 mV), which are more easily accumulated in tumor. Meanwhile, the GNOLs exhibit a slow and controlled release of oleanolic acid at pH 7.4, as well as a rapid release at pH 5.5, which is beneficial for tumor‐targeting drug release. Under near infrared (NIR) irradiation, hyperthermia can be generated by activated gold nanoshells to perform photothermal therapy effect, which triggers drug release from the carriers by activating the gel to liquid crystalline phase transition of the liposomes. Moreover, the NIR assisting drug release can be easily and selectively activated locally due to the spatially and real‐timely controllable property of light. The experimental results also verify that the GNOLs with NIR irradiation achieve more ideal antitumor effects than other oleanolic acid formulations in vitro and in vivo. Hence, the drug delivery system exhibits a great potential in chemo‐photothermal antitumor therapy.  相似文献   

17.
18.
19.
20.
In the anti‐cancer war, there are three main obstacles resulting in high mortality and recurrence rate of cancers: the severe toxic side effect of anti‐cancer drugs to normal tissues due to the lack of tumor‐selectivity, the multi‐drug resistance (MDR) to free chemotherapeutic drugs and the deadly metastases of cancer cells. The development of state‐of‐art nanomedicines based on mesoporous silica nanoparticles (MSNs) is expected to overcome the above three main obstacles. In the view of the fast development of anti‐cancer strategy, this review highlights the most recent advances of MSN anti‐cancer nanomedicines in enhancing chemotherapeutic efficacy, overcoming the MDR and inhibiting metastasis. Furthermore, we give an outlook of the future development of MSNs‐based anti‐cancer nanomedicines, and propose several innovative and forward‐looking anti‐cancer strategies, including tumor tissue?cell?nuclear successionally targeted drug delivery strategy, tumor cell‐selective nuclear‐targeted drug delivery strategy, multi‐targeting and multi‐drug strategy, chemo‐/radio‐/photodynamic‐/ultrasound‐/thermo‐combined multi‐modal therapy by virtue of functionalized hollow/rattle‐structured MSNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号