首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Yolk–shell nanostructures (YSNs) composed of a core within a hollow cavity surrounded by a porous outer shell have received tremendous research interest owing to their unique structural features, fascinating physicochemical properties, and widespread potential applications. Here, a comprehensive overview of the design, synthesis, and biomedical applications of YSNs is presented. The synthetic strategies toward YSNs are divided into four categories, including hard‐templating, soft‐templating, self‐templating, and multimethod combination synthesis. For the hard‐ or soft‐templating strategies, different types of rigid or vesicle templates are used for making YSNs. For the self‐templating strategy, a number of unconventional synthetic methods without additional templates are introduced. For the multimethod combination strategy, various methods are applied together to produce YSNs that cannot be obtained directly by only a single method. The biomedical applications of YSNs including biosensing, bioimaging, drug/gene delivery, and cancer therapy are discussed in detail. Moreover, the potential superiority of YSNs for these applications is also highlighted. Finally, some perspectives on the future research and development of YSNs are provided.  相似文献   

3.
Ultraviolet (UV)‐resonant metals (e.g., aluminum) typically have low melting point to cause a fabrication difficulty in helical sculpture to generate plasmons with chiroptical activity in the UV region. In this work, using glancing angle deposition (GLAD), two new methods are devised to generate crystalline chiral Al nanostructures that have stable chiroptical response in the UV–visible region originating from intrinsic helical structures. One approach involves fast substrate rotation during GLAD to fabricate Al nanoparticles (AlNPs) with hidden helicity; another is to deposit an achiral Al thin film on a host of plasmonic chiral NPs, such that the helical structures are duplicated from the chiral host to the achiral guest of Al nanocappings. The host@guest helicity duplication is a new GLAD methodology to generate chiroptically active plasmons, which can be generally adapted to diverse plasmonic metals for tailoring plasmonic chiroptical activity flexibly in the UV–visible region. More importantly, this work offers those two new methods to generate UV‐active plasmonic chiral substrates, which can markedly enhance chiroptical activity of biomolecules. It would open a door to develop surface‐enhanced chiroptical spectroscopies for sensitively monitoring stereobiochemical information, which is of prominent interest in understanding a wide range of homochirality‐determined biological phenomena.  相似文献   

4.
Poly(phenylacetylene) (PPA) copolymers containing (R)‐ or (S)‐MPA as minor chiral pendant can be forced to selectively adopt the right‐ o left‐handed helix, in the presence of small amounts of Na+ or Ag+ (“Sergeants and Soldiers Effect”) by addition of a donor cosolvent. The helical sense depends exclusively on the chiral monomer/donor cosolvent ratio, and this allows a perfect on/off tuning of the helicity of the copolymer. When the amount of the donor cosolvent is low, the metal ion complex is stabilized by a cation–π interaction, which is selectively cleaved when the amount of cosolvent is higher. Macroscopically chiral nanospheres and nanotubes composed by helical copolymers with P or M helical sense are also described. Our results demonstrate that it is possible to obtain the two enantiomeric helical structures (P and M helicities) and the corresponding nanospheres and nanotubes from a single helical copolymer, by controlled activation/deactivation of the Sergeant and Soldiers Effect with a donor cosolvent.  相似文献   

5.
6.
Hollow metal–organic framework (MOF) micro/nanostructures and their derivatives are attracting a great amount of research interest in recent years because their hierarchical porous structures not only provide abundant, easily accessed metal sites but also endow 3D channels for rapid mass transport. As a result, they demonstrate significant advantages in many applications including catalysis, gas sensors, batteries, supercapacitors, and so on. Nevertheless, studies on hollow MOFs and their derivatives are still at the beginning of this field, and the relationship between their structures and application performances is not yet reviewed comprehensively. Herein, the synthetic strategies and practical applications of hollow micro/nanostructured MOFs and their derivatives are summarized, and their corresponding prospects are also discussed.  相似文献   

7.
8.
Herein, the design of a DNA‐based chiral biosensor is described utilizing the self‐assembly of shell core–gold (Au) satellite nanostructures for the detection of mycotoxin, ochratoxin A (OTA). The assembly of core–satellite nanostructures based on OTA‐aptamer binding exhibits a strong chiral signal with an intense circular dichroism (CD) peak. The integrity of the assembly of core–satellite nanostructures is limited to some extent in the presence of different levels of OTA. Correspondingly, the chiral intensity of assembly is weakened with increasing OTA concentrations, allowing quantitative determination of the target. The developed chiral sensor shows an excellent linear relationship between the CD signal and concentrations of OTA in the range of 0.1–5 pg mL?1 with a limit of detection as low as 0.037 pg mL?1. The effectiveness of the biosensor in a sample of red wine is verified and a good recovery rate is obtained. These results suggest that the strategy has great potential for practical application.  相似文献   

9.
Controllable integration of inorganic nanoparticles (NPs) and metal–organic frameworks (MOFs) is leading to the creation of many new multifunctional materials. In this Research News, an emerging type of core–shell nanostructure, in which the inorganic NP cores are encapsulated by the MOF shells, is briefly introduced. Unique functions originating from the property synergies of different types of inorganic NP cores and MOF shells are highlighted, and insight into their future development is suggested. It is highly expected that this Research News could arouse research enthusiasm on such NP@MOF core–shell nanostructures, which have great application potential in devices, energy, the environment, and medicine.  相似文献   

10.
11.
12.
Fe–C–V and Fe–C–V–Si alloys of various C, V and Si compositions were investigated in this work. It was found that the phases present in both of these alloy systems were alloyed ferrite, alloyed cementite, and VCx carbides. Depending on the alloy composition the solidified microstructural constituents were granular pearlite-like, lamellar pearlite, or mixtures of alloyed ferrite + granular pearlite-like or granular pearlite-like + lamellar pearlite. In addition, it is shown that in Fe–C–V alloys the C/V ratio influences (a) the type of matrix, (b) the fraction of vanadium carbides, fv and (c) the eutectic cell count, NF. In Fe–C–V alloys, a relationship between the alloy content corresponding to the eutectic line was experimentally determined and can be described by where Ce and Ve are the carbon and vanadium composition of the eutectic. Moreover, in the Fe–C–V alloys (depending on the alloy chemistry), the primary VCx carbides crystallize with non-faceted or non-faceted/faceted interfaces, while the eutectic morphology is non-faceted/non-faceted with regular fiber-like structures, or it possesses a dual morphology (non-faceted/non-faceted with regular fiber-like structures + non-faceted/faceted with complex regular structures). In the Fe–C–V–Si system, the primary VCx carbides solidify with a non-faceted/faceted interface, while the eutectic is non-faceted/faceted with complex regular structures. In particular, spiral eutectic growth is observed when Si is present in the Fe–C–V alloys. In general, it is found that as the matrix constituent shifts from predominantly ferrite to lamellar pearlite, the hardness, yield and tensile strengths exhibit substantial increases at expenses of ductility. Moreover, Si additions lead to alloy strengthening by solid solution hardening of the ferrite phase and/or through a reduction in the eutectic fiber spacings with a decrease in the alloy ductility.  相似文献   

13.
Metal–organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF‐based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy‐related applications of complex nanostructures derived from MOF‐based precursors is provided. After a brief summary of synthetic methods of MOF‐based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single‐shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium‐ion batteries, hybrid supercapacitors, water‐splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF‐based‐templates for electrochemical energy storage and conversion applications are outlined.  相似文献   

14.
A facile two‐step solution‐phase method has been developed for the preparation of hierarchical α‐MnO2 nanowires@Ni1‐xMnxOy nanoflakes core–shell nanostructures. Ultralong α‐MnO2 nanowires were synthesized by a hydrothermal method in the first step. Subsequently, Ni1‐xMnxOy nanoflakes were grown on α‐MnO2 nanowires to form core–shell nanostructures using chemical bath deposition followed by thermal annealing. Both solution‐phase methods can be easily scaled up for mass production. We have evaluated their application in supercapacitors. The ultralong one‐dimensional (1D) α‐MnO2 nanowires in hierarchical core–shell nanostructures offer a stable and efficient backbone for charge transport; while the two‐dimensional (2D) Ni1‐xMnxOy nanoflakes on α‐MnO2 nanowires provide high accessible surface to ions in the electrolyte. These beneficial features enable the electrode with high capacitance and reliable stability. The capacitance of the core–shell α‐MnO2@Ni1‐xMnxOy nanostructures (x = 0.75) is as high as 657 F g?1 at a current density of 250 mA g?1, and stable charging‐discharging cycling over 1000 times at a current density of 2000 mA g?1 has been realized.  相似文献   

15.
The effect of β-iron intermetallics and porosity on the tensile properties in cast Al–Si–Cu and Al–Si–Mg alloys were investigated for this research study, using experimental and industrial 319.2 alloys, and industrial A356.2 alloys. The results showed that the alloy ductility and ultimate tensile strength (UTS) were subject to deterioration as a result of an increase in the size of β-iron intermetallics, most noticeable up to β-iron intermetallic lengths of 100 μm in 319.2 alloys, or 70 μm in A356.2 alloys. An increase in the size of the porosity was also deleterious to alloy ductility and UTS. Although tensile properties are interpreted by means of UTS vs. log elongation plots in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log elongation plots, where the properties increased linearly between conditions of low cooling rate–high Fe and high cooling rate–low Fe. The results are explained in terms of the β-Al5FeSi platelet size and porosity values obtained.  相似文献   

16.
17.
The vertical sections of Fe–12%Cr–B–xAl–C system with different aluminum contents have been calculated by use of Thermo‐Calc software and the influence of aluminum content on the phase regions and the parameters of eutectic point have been analyzed. Fe–12.0%Cr–1.0%B–2.0%Al–0.3%C and Fe–12.0%Cr–1.0%B–4.0%Al–0.3%C alloy were chosen to be studied by experiment. The phase transition temperatures were measured by differential scanning calorimetry and the microstructure and the phase type was detected by scanning electrone microscope‐energy dispersive X‐ray spectroscopy and X‐ray diffraction. The results indicate that calculated phase diagrams agree well with the experimental results and further prove the thermodynamics database of Thermo‐Calc software is reliable and it can be used to help design the alloy composition and heat treatment process.  相似文献   

18.
19.
20.
This study was made on a fresh variety of Al–Li base alloy to investigate the role of ageing precipitates and microstructure dimensions in the fatigue crack growth resistance. The fatigue crack growth rate was measured in three different states of the material (i.e. base metal in T8 condition, friction stir weld and laser beam weld in full‐aged condition). Metallurgical analysis showed that the base metal in T8 temper is precipitation hardened by an equivalent amount of δ′ (AL3Li), T1 (AI2CuLi) and θ′ (AI2Cu) precipitates. The friction stir weld retained the morphology of strengthening precipitate; however, coarsening of Cu containing precipitates has occurred. On the other hand, laser beam weld showed a different type of CuAl phase morphology, which is characteristic of cast metal. The results of fatigue tests confirmed that fatigue crack growth resistance largely depends on microstructural features, specifically the strengthening phases. The fatigue crack resistance was in the order of base metal > laser beam weldment > friction stir weldment. The CuAl phase played a vital role in the crack closure of the laser beam weldment, thus enhancing the fatigue life as compared with the friction stir weldment, which was evident from the plot between log of da/dN (crack growth in each cycle) and log of ΔK (stress intensity range).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号