首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant‐free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm?2, VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL?1) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%–50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost‐effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.  相似文献   

2.
With power conversion efficiencies now reaching 24.2%, the major factor limiting efficient electricity generation using perovskite solar cells (PSCs) is their long‐term stability. In particular, PSCs have demonstrated rapid degradation under illumination, the driving mechanism of which is yet to be understood. It is shown that elevated device temperature coupled with excess charge carriers due to constant illumination is the dominant force in the rapid degradation of encapsulated perovskite solar cells under illumination. Cooling the device to 20 °C and operating at the maximum power point improves the stability of CH3NH3PbI3 solar cells over 100× compared to operation under open circuit conditions at 60 °C. Light‐induced strain originating from photothermal‐induced expansion is also observed in CH3NH3PbI3, which excludes other light‐induced‐strain mechanisms. However, strain and electric field do not appear to play any role in the initial rapid degradation of CH3NH3PbI3 solar cells under illumination. It is revealed that the formation of additional recombination centers in PSCs facilitated by elevated temperature and excess charge carriers ultimately results in rapid light‐induced degradation. Guidance on the best methods for measuring the stability of PSCs is also given.  相似文献   

3.
Interfacial engineering of perovskite solar cells (PSCs) is attracting intensive attention owing to the charge transfer efficiency at an interface, which greatly influences the photovoltaic performance. This study demonstrates the modification of a TiO2 electron‐transporting layer with various amino acids, which affects charge transfer efficiency at the TiO2/CH3NH3PbI3 interface in PSC, among which the l ‐alanine‐modified cell exhibits the best power conversion efficiency with 30% enhancement. This study also shows that the (110) plane of perovskite crystallites tends to align in the direction perpendicular to the amino‐acid‐modified TiO2 as observed in grazing‐incidence wide‐angle X‐ray scattering of thin CH3NH3PbI3 perovskite film. Electrochemical impedance spectroscopy reveals less charge transfer resistance at the TiO2/CH3NH3PbI3 interface after being modified with amino acids, which is also supported by the lower intensity of steady‐state photoluminescence (PL) and the reduced PL lifetime of perovskite. In addition, based on the PL measurement with excitation from different side of the sample, amino‐acid‐modified samples show less surface trapping effect compared to the sample without modification, which may also facilitate charge transfer efficiency at the interface. The results suggest that appropriate orientation of perovskite crystallites at the interface and trap‐passivation are the niche for better photovoltaic performance.  相似文献   

4.
The carrier concentration of the electron‐selective layer (ESL) and hole‐selective layer can significantly affect the performance of organic–inorganic lead halide perovskite solar cells (PSCs). Herein, a facile yet effective two‐step method, i.e., room‐temperature colloidal synthesis and low‐temperature removal of additive (thiourea), to control the carrier concentration of SnO2 quantum dot (QD) ESLs to achieve high‐performance PSCs is developed. By optimizing the electron density of SnO2 QD ESLs, a champion stabilized power output of 20.32% for the planar PSCs using triple cation perovskite absorber and 19.73% for those using CH3NH3PbI3 absorber is achieved. The superior uniformity of low‐temperature processed SnO2 QD ESLs also enables the fabrication of ≈19% efficiency PSCs with an aperture area of 1.0 cm2 and 16.97% efficiency flexible device. The results demonstrate the promise of carrier‐concentration‐controlled SnO2 QD ESLs for fabricating stable, efficient, reproducible, large‐scale, and flexible planar PSCs.  相似文献   

5.
With rapid development for tens of years, organic solar cells (OSCs) have attracted much attention for their potential in practical applications. As an important photovoltaic parameter, the fill factor (FF) of OSCs stands for the effectiveness of charge generation and collection, which significantly depends on the properties of the interlayer and active layer. Here, a facile and effective strategy to improve the FF through hole‐transporting layer (HTL) modification is demonstrated. By mixing WOx nanoparticles with a poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) emulsion, the surface free energy of the HTL is improved and the morphology of the active layer is optimized. Benefiting from increased carrier lifetime, a device based on WOx:PEDOT:PSS HTL exhibits a boosted performance with an FF of 80.79% and power conversion efficiency of 14.57% PCE. The results are certified by the National Institute of Metrology (NIM), which, to date, are the highest values in this field with certification. This work offers a simple and viable option of HTL modification to realize highly efficient OSCs.  相似文献   

6.
Despite great progress in the photovoltaic conversion efficiency (PCE) of inorganic–organic hybrid perovskite solar cells (PSCs), the large‐scale application of PSCs still faces serious challenges due to the poor‐stability and high‐cost of the spiro‐OMeTAD hole transport layer (HTL). It is of great fundamental importance to rationally address the issues of hole extraction and transfer arising from HTL‐free PSCs. Herein, a brand‐new PSC architecture is designed by introducing multigraded‐heterojunction (GHJ) inorganic perovskite CsPbBrx I3?x layers as an efficient HTL. The grade adjustment can be achieved by precisely tuning the halide proportion and distribution in the CsPbBrx I3?x film to reach an optimal energy alignment of the valance and conduction band between MAPbI3 and CsPbBrx I3?x . The CsPbBrx I3?x GHJ as an efficient HTL can induce an electric field where a valance/conduction band edge is leveraged to bend at the heterojunction interface, boosting the interfacial electron–hole splitting and photoelectron extraction. The GHJ architecture enhances the hole extraction and conduction efficiency from the MAPbI3 to the counter electrode, decreases the recombination loss during the hole transfer, and benefits in increasing the open‐circuit voltage. The optimized HTL‐free PCS based on the GHJ architecture demonstrates an outstanding thermal stability and a significantly improved PCE of 11.33%, nearly 40% increase compared with 8.16% for pure HTL‐free devices.  相似文献   

7.
A variety of dopant‐free hole‐transporting materials (HTMs) is effectively applied in perovskite solar cells (PSCs); however, HTMs with the additional function of HTM/perovskite interfacial optimization that is crucial to their photovoltaic performance are really limited. In this work, the design of an HTM bearing an intensive exposure of its functional aromatic rings to perovskite layer via side‐chain engineering is attempted. With an edge‐on orientation and a short distance to perovskite, this HTM was expected to display an excellent ability to extract holes from and passivate defects in the perovskite layer. To demonstrate this strategy, an alternating copolymer was constructed with a 2,5‐di‐2‐ethylhexyloxy‐1,4‐phenylene unit and a bithiophene unit, and the PSC based on this polymer showed an ultrahigh short‐circuit current density of 25.50 mA cm?2, which was the highest so far presented by dopant‐free organic HTMs. A comparable power conversion efficiency of 19.68% (certified: 19.5%) to that of a control 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) device (19.81%) was thus obtained, which is the highest value ever reported for mesoporous PSCs based on dopant‐free polymeric HTMs.  相似文献   

8.
Designing air-stable perovskite solar cells (PSCs) is a recent trend in low-cost photovoltaic technology. Metal oxide-based electron transporting layers (ETLs) and hole transporting layers (HTLs) have attracted tremendous attention in PSCs, because of their excellent air stability, high electron mobility, and optical transparency. Herein, we report a co-precipitation method for the synthesis of p-type nanoporous nickel oxide (np-NiOx) thin films as the HTL for inverted (p-i-n) PSCs. The best-performing p-i-n PSC having np-NiOx HTL, (FAPbI3)0.85(MAPbBr3)0.15 (herein FAPbI3 stands for formamidinium lead iodide and MAPbBr3 stands for methylammonium lead bromide) perovskite and phenyl-C61-butyric acid methyl ester (PCBM)/ZnO ETL exhibited a 19.10% (±1%) power conversion efficiency (PCE) with a current density (JSC) of 22.76?mA?cm?2, open circuit voltage (VOC) of 1.076?V and fill factor (FF) of 0.78 under 1?sun (100?mW?cm?2). Interestingly, the developed p-i-n PSCs based on p-type NiOx and n-type ZnO could retain >80% efficiency after 160?days, which is much higher than conventional PEDOT:PSS HTL-based PSCs. Our findings provide air-stable perovskite solar cells with high efficiency.  相似文献   

9.
Until now, poly(3,4-ethylenedioxythiophene):poly(styrensulfonate) (PEDOT:PSS) is widely used in Sn–Pb perovskite solar cells (PSCs) due to its many advantages, including high optical transparency, suitable conductivity, superior wettability, and so on. However, the acidic and hydroscopic properties of the PSS component, as well as the incongruous energy level of the hole transport layer (HTL), may lead to unsatisfying interface properties and decreased device performance. Herein, by adding polyethylene glycol dimethacrylate (PEGDMA) into PEDOT:PSS, a newly crosslinked-double-network obtain of PEDOT:PSS@PEGDMA film, which could not only optimize nucleation and crystallinity of Sn–Pb perovskite films, but also suppress defect density and optimize energy level alignment at the HTL/perovskite interface. As a result, the achieves highly efficient and stable mixed Sn–Pb PSCs with an encouraging power conversion efficiency of 20.9%. Additionally, the device can maintain good stability under N2 atmosphere.  相似文献   

10.
Doped 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐MeOTAD), which acts as a hole‐transporting layer (HTL), endows perovskite solar cells (PSCs) with excellent performance. However, the intrinsically hygroscopic nature of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopants also aggravates the moisture instability of PSCs. In this work, the origins of the moisture instability of spiro‐MeOTAD HTLs are explored and strategies to enhance moisture resistance are proposed. After 780 h of aging in air, 52% of the initial power conversion efficiency (PCE) can be sustained by prolonging the mixing time of the precursor solution of spiro‐MeOTAD to reduce accumulated LiTFSI. In contrast, only 7% of the initial PCE remains if the precursor solution is mixed briefly. By thermally annealing an HTL to evaporate residual tBP in spiro‐MeOTAD, pinholes are completely eliminated and 65% of the initial PCE remains after the same aging time. In this study, the significance of the initial morphology of spiro‐MeOTAD HTLs on device stability is analyzed and strategies based on physical morphology for controlling PSC moisture instability induced by HTL dopants are developed.  相似文献   

11.
All‐solution‐processed pure formamidinium‐based perovskite light‐emitting diodes (PeLEDs) with record performance are successfully realized. It is found that the FAPbBr3 device is hole dominant. To achieve charge carrier balance, on the anode side, PEDOT:PSS 8000 is employed as the hole injection layer, replacing PEDOT:PSS 4083 to suppress the hole current. On the cathode side, the solution‐processed ZnO nanoparticle (NP) is used as the electron injection layer in regular PeLEDs to improve the electron current. With the smallest ZnO NPs (2.9 nm) as electron injection layer (EIL), the solution‐processed PeLED exhibits a highest forward viewing power efficiency of 22.3 lm W?1, a peak current efficiency of 21.3 cd A?1, and an external quantum efficiency of 4.66%. The maximum brightness reaches a record 1.09 × 105 cd m?2. A record lifetime T50 of 436 s is achieved at the initial brightness of 10 000 cd m?2. Not only do PEDOT:PSS 8000 HIL and ZnO NPs EIL modulate the injected charge carriers to reach charge balance, but also they prevent the exciton quenching at the interface between the charge injection layer and the light emission layer. The subbandgap turn‐on voltage is attributed to Auger‐assisted energy up‐conversion process.  相似文献   

12.
Molecularly engineered novel dopant‐free hole‐transporting materials for perovskite solar cells (PSCs) combined with mixed‐perovskite (FAPbI3)0.85(MAPbBr3)0.15 (MA: CH3NH3+, FA: NH=CHNH3+) that exhibit an excellent power conversion efficiency of 18.9% under AM 1.5 conditions are investigated. The mobilities of FA‐CN, and TPA‐CN are determined to be 1.2 × 10?4 cm2 V?1 s?1 and 1.1 × 10?4 cm2 V?1 s?1, respectively. Exceptional stability up to 500 h is measured with the PSC based on FA‐CN. Additionally, it is found that the maximum power output collected after 1300 h remained 65% of its initial value. This opens up new avenue for efficient and stable PSCs exploring new materials as alternatives to Spiro‐OMeTAD.  相似文献   

13.
Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole‐conductor‐free printable mesoscopic PVSCs. The CH3NH3PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3NH3PbI3(SrCl2)x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3NH3PbI3(SrCl2)0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole‐conductor‐free device to 15.9%, outperforming the value (13.0%) of the pristine CH3NH3PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved.  相似文献   

14.
Traditional carbon materials have demonstrated immense potential in perovskite solar cells (PSCs) owing to their superior electrical properties and environmental stability. Graphdiyne (GDY), as an emerging carbon allotrope, features uniformly distributed pores, endless design flexibility, and unique electronic character compared with traditional carbon materials. Herein, graphdiyne is introduced into the upper part of the perovskite (CH3NH3PbI3) layer by utilizing a GDY‐containing antisolvent during the one‐step synthesis of perovskite. Intriguingly, GDY plays an essential role in hole accumulation and transportation because of its higher Fermi level than perovskite. As a result, the automatic separation of photogenerated carriers inside the perovskite film is achieved. Furthermore, the Schottky barrier formed on the interface between perovskite and GDY guarantees the unidirectional hole transport from perovskite to GDY, thereby benefiting further extraction to the hole transport layer. Consequently, GDY‐modified perovskite‐based planar PSCs exhibit a boosted Jsc of 24.21 mA cm?2 and up to 19.6% power conversion efficiency owing to the increased efficient light utilization and charge extraction. The device with GDY modification exhibits less than 10% shrinkage after a month in ambience. Overall, this work demonstrates an easy method for the utilization of GDY to boost the charge extraction and environmental stability in PSCs.  相似文献   

15.
Metal halide perovskite thin films can be crystallized via a broad range of solution‐based routes. However, the quality of the final films is strongly dependent upon small changes in solution composition and processing parameters. Here, this study demonstrates that a fractional substitution of PbCl2 with PbI2 in the 3CH3NH3I:PbCl2 mixed‐halide starting solution has a profound influence upon the ensuing thin‐film crystallization. The presence of PbI2 in the precursor induces a uniform distribution of regular quadrilateral‐shaped CH3NH3PbI3 perovskite crystals in as‐cast films, which subsequently grow to form pinhole‐free perovskite films with highly crystalline domains. With this new formulation of 3CH3NH3I:0.98PbCl2:0.02PbI2, this study achieves a 19.1% current–voltage measured power conversion efficiency and a 17.2% stabilized power output in regular planar heterojunction solar cells.  相似文献   

16.
The morphology of hybrid organic–inorganic perovskite films is known to strongly affect the performance of perovskite‐based solar cells. CH3NH3PbI3‐xClx (MAPbI3‐xClx) films have been previously fabricated with 100% surface coverage in glove boxes. In ambient air, fabrication generally relies on solvent engineering to obtain compact films. In contrast, this work explores the potential of altering the perovskites microstructure for solar cell engineering. This work starts with CH3NH3PbI3‐xClx, films with grain morphology carefully controlled by varying the deposition speed during the spin‐coating process to fabricate efficient and partially transparent solar cells. Devices produced with a CH3NH3PbI3‐xClx film and a compact thick top gold electrode reach a maximum efficiency of 10.2% but display a large photocurrent hysteresis. As it is demonstrated, the introduction of different concentrations of bromide in the precursor solution addresses the hysteresis issues and turns the film morphology into a partially transparent interconnected network of 1D microstructures. This approach leads to semitransparent solar cells with negligible hysteresis and efficiencies up to 7.2%, while allowing average transmission of 17% across the visible spectrum. This work demonstrates that the optimization of the perovskites composition can mitigate the hysteresis effects commonly attributed to the charge trapping within the perovskite film.  相似文献   

17.
Perovskite solar cells with all‐organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high‐temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron‐transporting layer of inverted perovskite cells affects the open‐circuit voltage (VOC). It is shown that nonradiative recombination mediated by the electron‐transporting layer is the limiting factor for the VOC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a VOC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge‐blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.  相似文献   

18.
Effective passivation and stabilization of both the inside and interface of a perovskite layer are crucial for perovskite solar cells (PSCs), in terms of efficiency, reproducibility, and stability. Here, the first formamidinium lead iodide (δ‐FAPbI3) polymorph passivated and stabilized MAPbI3 PSCs are reported. This novel MAPbI3/δ‐FAPbI3 structure is realized via treating a mixed organic cation MA x FA1‐ x PbI3 perovskite film with methylamine (MA) gas. In addition to the morphology healing, MA gas can also induce the formation of δ‐FAPbI3 phase within the perovskite film. The in situ formed 1D δ‐FAPbI3 polymorph behaves like an organic scaffold that can passivate the trap state, tunnel contact, and restrict organic‐cation diffusion. As a result, the device efficiency is easily boosted to 21%. Furthermore, the stability of the MAPbI3/δ‐FAPbI3 film is also obviously improved. This δ‐FAPbI3 phase passivation strategy opens up a new direction of perovskite structure modification for further improving stability without sacrificing efficiency.  相似文献   

19.

Hole transporting materials play a vital role in improving the performance of perovskite solar cells (PSCs). In this work, different concentrations of poly[bis(4-phenyl)(2, 4, 6-trimethylphenyl)amine] (PTAA) are used to modify the surface of sputtered nickel oxide (NiOx) as hole transport layer (HTL) in inverted PSCs. After the introduction of PTAA, the roughness of the sputtered NiOx films decreases, while the crystallinity of the perovskite layer increases. The carrier transport across the interface between the sputtered NiOx film and the perovskite layer is significantly improved. A power conversion efficiency of 18.5% is achieved based on PTAA-modified sputtered NiOx, exhibiting a 15.2% improvement compared to its pristine counterpart.

  相似文献   

20.
Despite the rapid progress in solar power conversion efficiency of archetype organic–inorganic hybrid perovskite CH3NH3PbI3‐based solar cells, the long‐term stability and toxicity of Pb remain the main challenges for the industrial deployment, leading to more uncertainties for global commercialization. The poor stabilities of CH3NH3PbI3‐based solar cells may not only be attributed to the organic molecules but also the halides themself, most of which exhibit intrinsic instability under moisture and light. As an alternative, the possibility of oxide perovskites for photovoltaic applications is explored here. The class of lead‐free stable oxide double perovskites A2M(III)M(V)O6 (A = Ca, Sr, Ba; M(III) = Sb3+ or Bi3+; M(V) = V5+, Nb5+, or Ta5+) is comprehensively explored with regard to their stability and their electronic and optical properties. Apart from the strong stability, this class of double perovskites exhibits direct bandgaps ranging from 0.3 to 3.8 eV. With proper B site alloying, the bandgap can be tuned within the range of 1.0–1.6 eV with optical absorptions as strong as CH3NH3PbI3, making them suitable for efficient single‐junction thin‐film solar cell application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号