首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near infrared (NIR) light triggered phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) affords superior outcome in cancer treatment. However, the reactive oxygen species (ROS) generated by NIR‐excited upconversion nanostructure is limited by the feeble upconverted light which cannot activate PDT agents efficiently. Here, an IR‐808 dye sensitized upconversion nanoparticle (UCNP) with a chlorin e6 (Ce6)‐functionalized silica layer is developed for PDT agent. The two booster effectors (dye‐sensitization and core–shell enhancement) synergistically amplify the upconversion efficiency, therefore achieving superbright visible emission under low 808 nm light excitation. The markedly amplified red light subsequently triggers the photosensitizer (Ce6) to produce large amount of ROS for efficient PDT. After the silica is endowed with positive surface, these PDT nanoparticles can be easily grafted on MoS2 nanosheet. As the optimal laser wavelength of UCNPs is consistent with that of MoS2 nanosheet for PTT, the invented nanoplatform generates both abundant ROS and local hyperthermia upon a single 808 nm laser irradiation. Both the in vitro and in vivo assays validate that the innovated nanostructure presents excellent cancer cell inhibition effectiveness by taking advantages of the synergistic PTT and PDT, simultaneously, posing trimodal (upconversion luminescence/computed tomography (CT)/magnetic resonance imaging (MRI) imaging capability.  相似文献   

2.
Conjugated polymers with strong absorbance in the near‐infrared (NIR) region have been widely explored as photothermal therapy agents due to their excellent photostability and high photothermal conversion efficiency. Herein, polypyrrole (PPy) nanoparticles are fabricated by using bovine serum albumin (BSA) as the stabilizing agent, which if preconjugated with photosensitizer chlorin e6 (Ce6) could offer additional functionalities in both imaging and therapy. The obtained PPy@BSA‐Ce6 nanoparticles exhibit little dark toxicity to cells, and are able to trigger both photodynamic therapy (PDT) and photothermal therapy (PTT). As a fluorescent molecule that in the meantime could form chelate complex with Gd3+, Ce6 in PPy@BSA‐Ce6 nanoparticles after being labeled with Gd3+ enables dual‐modal fluorescence and magnetic resonance (MR) imaging, which illustrate strong tumor uptake of those nanoparticles after intravenous injection into tumor‐bearing mice. In vivo combined PDT and PTT treatment is then carried out after systemic administration of PPy@BSA‐Ce6, achieving a remarkably improved synergistic therapeutic effect compared to PDT or PTT alone. Hence, a rather simple one‐step approach to fabricate multifunctional nanoparticles based on conjugated polymers, which appear to be promising in cancer imaging and combination therapy, is presented.  相似文献   

3.
It is highly desired that satisfactory photoactive agents with ideal photophysical characteristics are explored for potent cancer phototherapeutics. Herein, bifunctional nanoparticles of low‐bandgap donor–acceptor (D–A)‐type conjugated‐polymer nanoparticles (CP‐NPs) are developed to afford a highly efficient singlet‐to‐triplet transition and photothermal conversion for near‐infrared (NIR) light‐induced photodynamic (PDT)/photothermal (PTT) treatment. CP‐NPs display remarkable NIR absorption with the peak at 782 nm, and perfect resistance to photobleaching. Photoexcited CP‐NPs undergo singlet‐to‐triplet intersystem crossing through charge transfer in the excited D–A system and simultaneous nonradiative decay from the electron‐deficient electron acceptor isoindigo derivative under single‐wavelength NIR light irradiation, leading to distinct singlet oxygen quantum yield and high photothermal conversion efficiency. Moreover, the CP‐NPs display effective cellular uptake and cytoplasmic translocation from lysosomes, as well as effective tumor accumulation, thus promoting severe light‐triggered damage caused by favorable reactive oxygen species (ROS) generation and potent hyperthermia. Thus, CP‐NPs achieve photoactive cell damage through their photoconversion ability for synergistic PDT/PTT treatment with tumor ablation. The proof‐of‐concept design of D–A‐type conjugated‐polymer nanoparticles with ideal photophysical characteristics provides a general approach to afford potent photoactive cancer therapy.  相似文献   

4.
Photothermal therapy (PTT) usually requires hyperthermia >50 °C for effective tumor ablation, which inevitably induces heating damage to the surrounding normal tissues/organs. Moreover, low tumor retention and high liver accumulation are the two main obstacles that significantly limit the efficacy and safety of many nanomedicines. To solve these problems, a smart albumin‐based tumor microenvironment‐responsive nanoagent is designed via the self‐assembly of human serum albumin (HSA), dc‐IR825 (a cyanine dye and a photothermal agent), and gambogic acid (GA, a heat shock protein 90 (HSP90) inhibitor and an anticancer agent) to realize molecular targeting‐mediated mild‐temperature PTT. The formed HSA/dc‐IR825/GA nanoparticles (NPs) can escape from mitochondria to the cytosol through mitochondrial disruption under near‐infrared (NIR) laser irradiation. Moreover, the GA molecules block the hyperthermia‐induced overexpression of HSP90, achieving the reduced thermoresistance of tumor cells and effective PTT at a mild temperature (<45 °C). Furthermore, HSA/dc‐IR825/GA NPs show pH‐responsive charge reversal, effective tumor accumulation, and negligible liver deposition, ultimately facilitating synergistic mild‐temperature PTT and chemotherapy. Taken together, the NIR‐activated NPs allow the release of molecular drugs more precisely, ablate tumors more effectively, and inhibit cancer metastasis more persistently, which will advance the development of novel mild‐temperature PTT‐based combination strategies.  相似文献   

5.
Previously, a large volume of papers reports that gold nanorods (Au NRs) are able to effectively kill cancer cells upon high laser doses (usually 808 nm, 1–48 W/cm2) irradiation, leading to hyperthermia‐induced destruction of cancer cells, i.e, photothermal therapy (PTT) effects. Combination of Au NRs‐mediated PTT and organic photosensitizers‐mediated photodynamic therapy (PDT) were also reported to achieve synergistic PTT and PDT effects on killing cancer cells. Herein, we demonstrate for the first time that Au NRs alone can sensitize formation of singlet oxygen (1O2) and exert dramatic PDT effects on complete destrcution of tumors in mice under very low LED/laser doses of single photon NIR (915 nm, <130 mW/cm2) light excitation. By changing the NIR light excitation wavelengths, Au NRs‐mediated phototherapeutic effects can be switched from PDT to PTT or combination of both. Both PDT and PTT effects were confirmed by measurements of reactive oxygen species (ROS) and heat shock protein (HSP 70), singlet oxygen sensor green (SOSG) sensing, and sodium azide quenching in cellular experiments. In vivo mice experiments further show that the PDT effect via irradiation of Au NRs by 915 nm can destruct the B16F0 melanoma tumor in mice far more effectively than doxorubicin (a clinically used anti‐cancer drug) as well as the PTT effect (via irradiation of Au NRs by 780 nm light). In addition, we show that Au NRs can emit single photon‐induced fluorescence to illustrate their in vivo locations/distribution.  相似文献   

6.
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) employs phototherapeutic agents to generate heat or cytotoxic reactive oxygen species (ROS), and has therefore garnered particular interest for cancer therapy. However, the main challenges faced by conventional phototherapeutic agents include easy recognition by the immune system, rapid clearance from blood circulation, and low accumulation in target sites. Cell‐membrane coating has emerged as a potential way to overcome these limitations, owing to the abundant proteins on the surface of cell membranes that can be inherited to the cell membrane–camouflaged nanoparticles. This review summarizes the recent advances in the development of biomimetic cell membrane–camouflaged nanoparticles for cancer phototherapy. Different sources of cell membranes can be used to coat nanoparticles uisng different coating approaches. After cell‐membrane coating, the photophysical properties of the original phototherapeutic nanoparticles remain nearly unchanged; however, the coated nanoparticles are equipped with additional physiological features including immune escape, in vivo prolonged circulation time, or homologous targeting, depending on the cell sources. Moreover, the coated cell membrane can be ablated from phototherapeutic nanoparticles under laser irradiation, leading to drug release and thus synergetic therapy. By combining other supplementary agents to normalize tumor microenvironment, cell‐membrane coating can further enhance the therapeutic efficacy against cancer.  相似文献   

7.
Effectively interfering energy metabolism in tumor cells and simultaneously activating the in vivo immune system to perform immune attacks are meaningful for tumor treatment. However, precisely targeted therapy is still a huge challenge. Herein, a mitochondrial-targeting phototheranostic system, FE-T nanoparticles (FE-T NPs) are developed to damage mitochondria in tumor cells and change the tumor immunosuppressive microenvironment. FE-T NPs are engineered by encapsulating the near-infrared (NIR) absorbed photosensitizer IR-FE-TPP within amphiphilic copolymer DSPE-SS-PEG-COOH for high-performing with simultaneous mitochondrial-targeting, near-infrared II (NIR-II) fluorescence imaging, and synchronous photothermal therapy (PTT) /photodynamic therapy (PDT) /immune therapy (IMT). In tumor treatment, the disulfide in the copolymer can be cleaved by excess intracellular glutathione (GSH) to release IR-FE-TPP and accumulate in mitochondria. After 808 nm irradiation, the mitochondrial localization of FE-T NPs generated reactive oxygen species (ROS), and hyperthermia, leading to mitochondrial dysfunction, photoinductive apoptosis, and immunogenic cell death (ICD). Notably, in situ enhanced PDT/PTT in vivo via mitochondrial-targeting with FE-T NPs boosts highly efficient ICD toward excellent antitumor immune response. FE-T NPs provide an effective mitochondrial-targeting phototheranostic nanoplatform for imaging-guided tumor therapy.  相似文献   

8.
Singlet oxygen (1O2), as an important kind of reactive oxygen species (ROS) and main therapeutic agent in photodynamic therapy (PDT), only have a half‐life of 40 ns and an effective radius of 20 nm, which cause significant obstacles for improving PDT efficacy. In this work, novel upconversion nanoparticle (UCN)‐based nanoplatforms are developed with a minimized distance between UCNs and a photosensitizer, protoporphyrin IX (PpIX), and a controllable payload of PpIX, to enhance and control ROS production. The ability of the nanoplatform to target different subcellular organelles such as cell membrane and mitochondria is demonstrated via surface modification of the nanoplatform with different targeting ligands. The results show that the mitochondria‐targeting nanoplatforms result in significantly increased capability of both tumor cell killing and inhibition of tumor growth. Subcellular targeting of nanoparticles leads to the death of cancer cells in different manners. However, the efficiency of ROS generation almost have no influence on the tumor cell viability during the period of evaluation. These findings suggest that specific subcellular targeting of the nanoplatforms enhances the PDT efficacy more effectively than the increase of ROS production, and may shed light on future novel designs of effective and controllable PDT nanoplatforms.  相似文献   

9.
An urgent challenge for imaging‐guided disease‐targeted multimodal therapy is to develop the appropriate multifunctional agents to meet the requirements for potential applications. Here, a rigid cyclohexenyl substitution in the middle of a polymethine linker and two asymmetrical amphipathic N‐alkyl side chains to indocyanine green (ICG) (the only FDA‐approved NIR contrast agent) are introduced, and a new analog, IR‐DBI, is developed with simultaneous cancer‐cell mitochondrial targeting, NIR imaging, and chemo‐/PDT/PTT/multimodal therapeutic activities. The asymmetrical and amphipathic structural modification renders IR‐DBI a close binding to albumin protein site II to form a drug–protein complex and primarily facilitates its preferential accumulation at tumor sites via the enhanced permeability and retention (EPR) effect. The released IR‐DBI dye is further actively taken up by cancer cells through organic‐anion‐transporting polypeptide transporters, and the lipophilic cationic property leads to its selective accumulation in the mitochondria of cancer cells. Finally, based on the high albumin‐binding affinity, IR‐DBI is modified into human serum albumin (HSA) via self‐assembly to produce a nanosized complex, which exhibits significant improvement in the cancer targeting and multimodal cancer treatment with better biocompatibility. This finding may present a practicable strategy to develop small‐molecule‐based cancer theranostic agents for simultaneous cancer diagnostics and therapeutics.  相似文献   

10.
Conjugated polymers (CPs) with strong near‐infrared (NIR) absorption and high heat conversion efficiency have emerged as a new generation of photothermal therapy (PTT) agents for cancer therapy. An efficient strategy to design NIR absorbing CPs with good water dispersibility is essential to achieve excellent therapeutic effect. In this work, poly[9,9‐bis(4‐(2‐ethylhexyl)phenyl)fluorene‐alt‐co‐6,7‐bis(4‐(hexyloxy)phenyl)‐4,9‐di(thiophen‐2‐yl)‐thiadiazoloquinoxaline] (PFTTQ) is synthesized through the combination of donor–acceptor moieties by Suzuki polymerization. PFTTQ nanoparticles (NPs) are fabricated through a precipitation approach using 1,2‐distearoyl‐ sn ‐glycero‐3‐phosphoethanolamine‐N‐[methoxy(polyethylene glycol)‐2000] (DSPE‐PEG2000) as the encapsulation matrix. Due to the large NIR absorption coefficient (3.6 L g‐1 cm‐1), the temperature of PFTTQ NP suspension (0.5 mg/mL) could be rapidly increased to more than 50 °C upon continuous 808 nm laser irradiation (0.75 W/cm2) for 5 min. The PFTTQ NPs show good biocompatibility to both MDA‐MB‐231 cells and Hela cells at 400 μg/mL of NPs, while upon laser irradiation, effective cancer cell killing is observed at a NP concentration of 50 μg/mL. Moreover, PFTTQ NPs could efficiently ablate tumor in in vivo study using a Hela tumor mouse model. Considering the large amount of NIR absorbing CPs available, the general encapsulation strategy will enable the development of more efficient PTT agents for cancer or tumor therapy.  相似文献   

11.
This study reports a double‐targeting “nanofirework” for tumor‐ignited imaging to guide effective tumor‐depth photothermal therapy (PTT). Typically, ≈30 nm upconversion nanoparticles (UCNP) are enveloped with a hybrid corona composed of ≈4 nm CuS tethered hyaluronic acid (CuS‐HA). The HA corona provides active tumor‐targeted functionality together with excellent stability and improved biocompatibility. The dimension of UCNP@CuS‐HA is specifically set within the optimal size window for passive tumor‐targeting effect, demonstrating significant contributions to both the in vivo prolonged circulation duration and the enhanced size‐dependent tumor accumulation compared with ultrasmall CuS nanoparticles. The tumors featuring hyaluronidase (HAase) overexpression could induce the escape of CuS away from UCNP@CuS‐HA due to HAase‐catalyzed HA degradation, in turn activating the recovery of initially CuS‐quenched luminescence of UCNP and also driving the tumor‐depth infiltration of ultrasmall CuS for effective PTT. This in vivo transition has proven to be highly dependent on tumor occurrence like a tumor‐ignited explosible firework. Together with the double‐targeting functionality, the pathology‐selective tumor ignition permits precise tumor detection and imaging‐guided spatiotemporal control over PTT operation, leading to complete tumor ablation under near infrared (NIR) irradiation. This study offers a new paradigm of utilizing pathological characteristics to design nanotheranostics for precise detection and personalized therapy of tumors.  相似文献   

12.
Photodynamic therapy (PDT) based on photosensitizers (PSs) constructed with nanomaterials has become popular in cancer treatment, especially oral carcinoma cell. This therapy is characterized by improved PS accumulation in tumor regions and generation of reactive oxygen species (ROS) for PDT under specific excitation. In the selection of near‐infrared (NIR) window, 808 nm NIR light because it can avoid the absorption of water is particularly suitable for the application in PDT. Hence, multiband emissions under a single 808 nm near‐infrared excitation of Nd3+‐sensitized upconversion nanoparticles (808 nm UCNPs) have been applied for the PDT effect. 808 nm UCNPs serve as light converter to emit UV light to excite inorganic PS, graphitic carbon nitride quantum dots (CNQDs), thereby generating ROS. In this study, a nanocomposite consisting UCNPs conjugated with poly‐l ‐lysine (PLL) to improve binding with CNQDs is fabricated. According to the research results, NIR‐triggered nanocomposites of 808 nm UCNP‐PLL@CNs have been verified by significant improvement in ROS generation. Consequently, 808 nm UCNP‐PLL@CNs exhibit high capability for ROS production and efficient PDT in vitro and in vivo. Moreover, the mechanism of PDT treatment by 808 nm UCNP‐PLL@CNs is evaluated using the cell apoptosis pathway.  相似文献   

13.
In this work, a DNA inter‐strand replacement strategy for therapeutic activity is successfully designed for multimodal therapy. In this multimodal therapy, chlorin e6 (Ce6) photosensitizer molecules are used for photodynamic therapy (PDT), while aptamer‐AuNRs, are used for selective binding to target cancer cells and for photothermal therapy (PTT) with near infrared laser irradiation. Aptamer Sgc8, which specifically targets leukemia T cells, is conjugated to an AuNR by a thiol‐Au covalent bond and then hybridized with a Ce6‐labeled photosensitizer/reporter to form a DNA double helix. When target cancer cells are absent, Ce6 is quenched and shows no PDT effect. However, when target cancer cells are present, the aptamer changes structure to release Ce6 to produce singlet oxygen for PDT upon light irradiation. Importantly, by combining photosensitizer and photothermal agents, PTT/PDT dual therapy supplies a more effective therapeutic outcome than either therapeutic modality alone.  相似文献   

14.
A multifunctional theranostic platform based on conjugated polymer nanoparticles (CPNs) with tumor targeting, fluorescence detection, photodynamic therapy (PDT), and photothermal therapy (PTT) is developed for effective cancer imaging and therapy. Two conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)‐ethyl)fluorenyldivinylene]‐alt‐4,7‐(2,1,3‐benzothiadiazole) with bright red emission and photosensitizing ability and poly[(4,4,9,9‐tetrakis(4‐(octyloxy)phenyl)‐4,9‐dihydro‐s‐indacenol‐dithiophene‐2,7‐diyl)‐alt‐co‐4,9‐bis(thiophen‐2‐yl)‐6,7‐bis(4‐(hexyloxy)phenyl)‐thiadiazolo‐quinoxaline] with strong near‐infrared absorption and excellent photothermal conversion ability are co‐loaded into one single CPN via encapsulation approach using lipid‐polyethylene glycol as the matrix. The obtained co‐loaded CPNs show sizes of around 30 nm with a high singlet oxygen quantum yield of 60.4% and an effective photothermal conversion efficiency of 47.6%. The CPN surface is further decorated with anti‐HER2 affibody, which bestows the resultant anti‐HER2‐CPNs superior selectivity toward tumor cells with HER2 overexpression both in vitro and in vivo. Under light irradiation, the PDT and PTT show synergistic therapeutic efficacy, which provides new opportunities for the development of multifunctional biocompatible organic materials in cancer therapy.  相似文献   

15.
Various organic nanoagents have been developed for photothermal therapy (PTT) and photodynamic therapy (PDT) under near‐infrared (NIR) irradiation. Among them, small molecule‐based nanoagents are very attractive due to their advantages of well‐defined chemical structures, high purity, good reproducibility, and easy processability. However, only a few small molecule‐based nanoagents have been developed for PDT under NIR irradiation. Moreover, the mechanism of PDT under NIR is still elusive. Herein, a semiconducting small molecule (BTA) with donor–acceptor–donor structure and twisted conformation is developed for PDT/PTT under NIR irradiation. A large π‐conjugated electron‐deficient unit is used as the core to couple with two electron‐donating units, ensuring the strong absorption under 808 nm. Moreover, the donor–acceptor structures and twisted conformation can reduce the energy gap between the singlet and triplet states (?EST) to afford effective intersystem crossing, beneficial for reactive oxygen species generation. The mechanism is probed by experimental and theoretical evidence. Moreover, the BTA nanoparticles exhibit excellent biocompatibility and PTT/PDT in vitro performance under NIR irradiation. This provides a strategy for designing highly efficient PDT/PTT molecular materials.  相似文献   

16.
Photoimmunotherapy can not only effectively ablate the primary tumor but also trigger strong antitumor immune responses against metastatic tumors by inducing immunogenic cell death. Herein, Cu2MoS4 (CMS)/Au heterostructures are constructed by depositing plasmonic Au nanoparticles onto CMS nanosheets, which exhibit enhanced absorption in near‐infrared (NIR) region due to the newly formed mid‐gap state across the Fermi level based on the hybridization between Au 5d orbitals and S 3p orbitals, thus resulting in more excellent photothermal therapy and photodynamic therapy (PDT) effect than single CMS upon NIR laser irradiation. The CMS and CMS/Au can also serve as catalase to effectively relieve tumor hypoxia, which can enhance the therapeutic effect of O2‐dependent PDT. Notably, the NIR laser‐irradiated CMS/Au can elicit strong immune responses via promoting dendritic cells maturation, cytokine secretion, and activating antitumor effector T‐cell responses for both primary and metastatic tumors eradication. Moreover, CMS/Au exhibits outstanding photoacoustic and computed tomography imaging performance owing to its excellent photothermal conversion and X‐ray attenuation ability. Overall, the work provides an imaging‐guided and phototherapy‐induced immunotherapy based on constructing CMS/Au heterostructures for effectively tumor ablation and cancer metastasis inhibition.  相似文献   

17.
Self‐assembly of gold nanoparticles demonstrates a promising approach to realize enhanced photoacoustic imaging (PAI) and photothermal therapy (PTT) for accurate diagnosis and efficient cancer therapy. Herein, unique photothermal assemblies with tunable patterns of gold nanoparticles (including arcs, rings, ribbons, and vesicles) on poly(lactic‐co‐glycolic acid) (PLGA) spheres are constructed taking advantage of emulsion‐confined and polymer‐directed self‐assembly strategies. The influencing factors and formation mechanism to produce the assemblies are investigated in details. Both the emulsion structure and migration behaviors of amphiphilic block copolymer tethered gold nanoparticles are found to contribute to the formation of versatile photothermal assemblies. Hyaluronic acid‐modified R‐PLGA‐Au (RPA) exhibits outstanding photothermal performances under NIR laser irradiation, which is induced by strong plasmonic coupling between adjacent gold nanoparticles. It is interesting that secondary assembly of RPA can be triggered by NIR laser irradiation. Prolonged residence time in tumors is achieved after RPA assemblies are fused into superstructures with larger sizes, realizing real‐time monitoring of the therapeutic processes via PAI with enhanced photoacoustic signals. Notably, synergistic effect resulting from PTT‐enhanced chemotherapy is realized to demonstrate high antitumor performance. This work provides a facile strategy to construct flexible photothermal assemblies with favorable properties for imaging‐guided synergistic therapy.  相似文献   

18.
Targeting is one of the most important strategies for enhancing the efficacy of cancer photothermal therapy (PTT) and reducing damage to surrounding normal tissues. Compared with the traditional targeting approaches, the active targeting of breast cancer cells in PTT using chemotherapeutic drugs, such as tamoxifen (TAM), in combination with single‐molecule photothermal photosensitizers has superior selectivity and therapeutic effects. However, single‐molecule drug‐targeting photosensitizers for improved PTT efficacy are not widely reported. Accordingly, herein, a near‐infrared induced small‐molecule photothermal photosensitizer (CyT) is developed that actively targets the estrogen receptors (ERs) of breast cancer cells as well as targets mitochondria by structure‐inherent targeting. Cell uptake and cytotoxicity studies using different types of cells show that CyT enhances the efficiency of TAM‐based PTT by targeting ER‐overexpressing breast cancer cells and selectively killing them. In vivo experiments demonstrate that CyT can be used as a photothermal agent for fluorescence imaging‐guided PTT. More importantly, the intravenous injection of CyT results in better targeting and efficiency of tumor inhibition compared with that achieved with the TAM‐free control molecule Cy. Thus, the study presents an excellent small‐molecule photothermal agent for breast cancer therapy with potential clinical application prospects.  相似文献   

19.
Mitochondrial‐targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin‐loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core–shell–SS–shell architecture are composed of a core of Fe3O4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near‐infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment.  相似文献   

20.
Photodynamic therapy (PDT) is an important cancer treatment modality due to its minimally invasive nature. However, the efficiency of existing PDT drug molecules in the deep‐tissue‐penetrable near‐infrared (NIR) region has been the major hurdle that has hindered further development and clinical usage of PDT. Thus, herein a strategy is presented to utilize a resonance energy transfer (RET) mechanism to construct a novel dyad photosensitizer which is able to dramatically boost NIR photon utility and enhance singlet oxygen generation. In this work, the energy donor moiety (distyryl‐BODIPY) is connected to a photosensitizer (i.e., diiodo‐distyryl‐BODIPY) to form a dyad molecule ( RET‐BDP ). The resulting RET‐BDP shows significantly enhanced absorption and singlet oxygen efficiency relative to that of the acceptor moiety of the photosensitizer alone in the NIR range. After being encapsulated with biodegradable copolymer pluronic F‐127‐folic acid (F‐127‐FA), RET‐BDP molecules can form uniform and small organic nanoparticles that are water soluble and tumor targetable. Used in conjunction with an exceptionally low‐power NIR LED light irradiation (10 mW cm?2), these nanoparticles show superior tumor‐targeted therapeutic PDT effects against cancer cells both in vitro and in vivo relative to unmodified photosensitizers. This study offers a new method to expand the options for designing NIR‐absorbing photosensitizers for future clinical cancer treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号