首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
衍射微透镜列阵掩模制作软件的设计   总被引:1,自引:0,他引:1  
研究了衍射微透镜列阵的设计方法及CIF格式掩模数据的数据结构与生成方法,设计了一套产用软件,采用图形切割、跟踪计算等方法,解决了生成子孔径为矩形、六 方形及圆环扇形的衍射微透镜列阵掩模的问题,满足了实际系统对衍射微透镜列阵子孔径形状的各种需求。  相似文献   

3.
4.
5.
Solution‐processed semiconductor single‐crystal patterns possess unique advantages of large scale and low cost, leading to potential applications toward high‐performance optoelectronic devices. To integrate organic semiconductor micro/nanostructures into devices, various patterning techniques have been developed. However, previous patterning techniques suffer from trade‐offs between precision, scalability, crystallinity, and orientation. Herein, a patterning method is reported based on an asymmetric‐wettability micropillar‐structured template. Large‐scale 1D single‐crystalline supramolecular arrays with strict alignment, pure crystallographic orientation, and precise position can be obtained. The wettability difference between tops and sidewalls of micropillars gives rise to the confinement of organic solutions in discrete capillary tubes followed by dewetting and formation of capillary trailing. The capillary trailing enables unidirectional dewetting, regulated mass transport, and confined crystal growth. Owing to the high crystallinity and pure crystallographic orientation with Pt atomic chains parallel to the substrate, the photodetectors based on the 1D arrays exhibit improved responsivity. The work not only provides fundamental understanding on the patterning and crystallization of supramolecular structures but also develops a large‐scale assembly technique for patterning single‐crystalline micro/nanostructures.  相似文献   

6.
A simple and efficient method to fabricate light extraction layers is demonstrated by utilizing the phase separation of two polymer blends to enhance the light out‐coupling efficiency of OLEDs with low haze. Polystyrene and poly(methyl methacrylate) dissolved in tetrahydrofuran are mixed and spin‐coated over ITO‐coated glass substrates. Nanopores and nanopillar arrays are formed through lateral phase separation of the polymer blend. The shape, size, and distribution of the patterns can be controlled through changes in the composition and thickness of the coated polymer blends. Phosphorescent OLEDs are fabricated using randomly dispersed nanopillar arrays as light extraction layers and they show a 24% enhancement in external quantum efficiency with a Lambertian emission pattern, no spectrum dependence on viewing angles, and only a small increment in the haze. With these advantages, this newly developed method can be adapted to be used for large‐area, flexible substrates for lighting and display applications.  相似文献   

7.
Elementary actuators performing branching or surface swelling are the primary units in the actuator integration system that is leveraged in works requiring a high versatility and complex motion. However, those primary actuator units often lack scalability or compatibility at assembly into a compact form due to the complexity of the structure and the actuation interference between adjacent units. Herein, it is shown that the phase-change actuator in a simple bilayer structure of a top active layer and a bottom constraint layer achieves 1D surface swelling, such that the closely packed 2D array system of this actuator is easily constructed. Upon resistive heating, the active layer inflates based on the phase change of microliquid droplets embedded in an elastomer body. The inflation along the lateral direction of the actuator is suppressed by controlling the thickness ratio between the active and the constraint layers. The actuation of individual units in the array system is performed independently using a switching device with a microcontroller for the parallel application of resistive heating. The application of 2D shape morphing of the actuator arrays in beam steering and shape displays is investigated.  相似文献   

8.
Network (sponge) and cellular structures are often seen in various types of materials. Materials with such structures are generally characterized by light weight and high mechanical strength. The usefulness of such materials is highlighted, for example, by the remarkable material properties of bone tissue, which often has a highly porous structure. In artificial materials, plastic and metallic foams and breads have such structures. Here, we describe a physical principle for producing network and cellular structures using phase separation, and its potential applications to the morphological control of materials spanning from soft to hard matter.  相似文献   

9.
二维光纤列阵接口器件及其在光互连网络模块中的应用   总被引:2,自引:0,他引:2  
提出了一种适用于光电子集成CMOS-SEED灵巧像素光互连网络的二维光纤束列阵结构和制作方法, 采用精密加工的光纤列阵定位槽和光学监控系统, 成功地研制出32×2 的单模和多模光纤列阵I/O接口器件, 光纤列阵层内及层间位移误差均小于2μm , 角向差小于0.02°。实验中, 已将二维光纤列阵I/O接口器件用于16×16 CMOS-SEED灵巧像素光电子集成Crossbar光互连模块中, 实验结果表明, 该光纤束列阵I/O接口器件完全满足光互连系统的高精度要求。  相似文献   

10.
Photocarrier recombination remains a big barrier for the improvement of solar energy conversion efficiency. For 2D materials, construction of heterostructures represents an efficient strategy to promote photoexcited carrier separation via an internal electric field at the heterointerface. However, due to the difficulty in seeking two components with suitable crystal lattice mismatch, most of the current 2D heterostructures are vertical heterostructures and the exploration of 2D lateral heterostructures is scarce and limited. Here, lateral epitaxial heterostructures of BiOCl @ Bi2O3 at the atomic level are fabricated via sonicating-assisted etching of Cl in BiOCl. This unique lateral heterostructure expedites photoexcited charge separation and transportation through the internal electric field induced by chemical bonding at the lateral interface. As a result, the lateral BiOCl @ Bi2O3 heterostructure demonstrates superior CO2 photoreduction properties with a CO yield rate of about 30 µmol g−1 h−1 under visible light illumination. The strategy to fabricate lateral epitaxial heterostructures in this work is expected to provide inspiration for preparing other 2D lateral heterostructures used in optoelectronic devices, energy conversion, and storage fields.  相似文献   

11.
12.
13.
Printing techniques using nanomaterials have emerged as a versatile tool for fast prototyping and potentially large-scale manufacturing of functional devices. Surfactants play a significant role in many printing processes due to their ability to reduce interfacial tension between ink solvents and nanoparticles and thus improve ink colloidal stability. Here, a colloidal graphene quantum dot (GQD)-based nanosurfactant is reported to stabilize various types of 2D materials in aqueous inks. In particular, a graphene ink with superior colloidal stability is demonstrated by GQD nanosurfactants via the π–π stacking interaction, leading to the printing of multiple high-resolution patterns on various substrates using a single printing pass. It is found that nanosurfactants can significantly improve the mechanical stability of the printed graphene films compared with those of conventional molecular surfactant, as evidenced by 100 taping, 100 scratching, and 1000 bending cycles. Additionally, the printed composite film exhibits improved photoconductance using UV light with 400 nm wavelength, arising from excitation across the nanosurfactant bandgap. Taking advantage of the 3D conformal aerosol jet printing technique, a series of UV sensors of heterogeneous structures are directly printed on 2D flat and 3D spherical substrates, demonstrating the potential of manufacturing geometrically versatile devices based on nanosurfactant inks.  相似文献   

14.
15.
针对测量结果中包含的误差,提出一种能够分离精密工作台系统误差的方法。首先利用辅助测量栅格板和二维精密工作台的不同位置进行测量,然后根据栅格板上标记点的测量数据和标称值建立误差分离的数学模型,最终实现对测量结果的误差分离。通过仿真验证了算法的有效性。仿真结果表明:当不存在测量噪声时,能够实现误差的完全分离;当存在测量噪声时,计算值与给定值标准差的相对误差在X轴和Y轴上分别为1.95%和1.52%。对于不同幅度的噪声,工作台系统误差计算值稳定。该算法对噪声不敏感,表现出很好的鲁棒性,可用于测量结果和仪器性能的评价。  相似文献   

16.
探索了冷冻诱导相分离法制备具有大孔结构的高吸水性树脂的方法。将羧甲基壳聚糖基高吸水树脂在水中溶胀并冷冻后,通过冷冻干燥的方法制得了具有大孔结构的高吸水树脂,这类树脂具有较快的吸水速率。研究了凝胶浓度、预冻温度、溶胀时间和明胶含量等反应条件对所制备树脂结构及溶胀动力学的影响。  相似文献   

17.
钛及其合金具有较好的生物相容性、耐腐蚀性和优异的力学性能,已广泛用作人体硬组织种植材料,并成功应用于骨、牙齿及整形外科等领域。近年来,通过阳极氧化法在钛表面构筑具有生物活性TiO2纳米管阵列的研究备受关注。在水热条件下,以TiO2纳米管阵列于饱和Ca(OH)2和0.01mol/L Na2HPO4溶液中诱导沉积羟基磷灰石(HAp)涂层,并采用SEM、XRD、HR-TEM、Raman等进行表征。结果表明,TiO2纳米管阵列在适宜的水热条件下,所沉积的HAp涂层呈现特殊双层结构,底层为短棒状呈十字交叉排列,上层为长棒状结构。体外生物矿化实验表明,TiO2纳米管阵列诱导水热沉积HAp涂层后可大大提高其生物活性。该方法具有设备简单、易于操作、温度低等优点,有利于在骨、关节及牙齿等硬组织植入物生物活化改性方面的推广应用。  相似文献   

18.
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase‐selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor‐phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.  相似文献   

19.
20.
2D crystals are typically uniform and periodic in‐plane with stacked sheet‐like structure in the out‐of‐plane direction. Breaking the in‐plane 2D symmetry by creating unique lattice structures offers anisotropic electronic and optical responses that have potential in nanoelectronics. However, creating nanoscale‐modulated anisotropic 2D lattices is challenging and is mostly done using top‐down lithographic methods with ≈10 nm resolution. A phase transformation mechanism for creating 2D striated lattice systems is revealed, where controlled thermal annealing induces Se loss in few‐layered PdSe2 and leads to 1D sub‐nm etched channels in Pd2Se3 bilayers. These striated 2D crystals cannot be described by a typical unit cells of 1–2 Å for crystals, but rather long range nanoscale periodicity in each three directions. The 1D channels give rise to localized conduction states, which have no bulk layered counterpart or monolayer form. These results show how the known family of 2D crystals can be extended beyond those that exist as bulk layered van der Waals crystals by exploiting phase transformations by elemental depletion in binary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号