首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene oxide (GO) has been extensively explored in nanomedicine for its excellent physiochemical, electrical, and optical properties. Here, polyethylene glycol (PEG) and polyethylenimine (PEI) are covalently conjugated to GO via amide bonds, obtaining a physiologically stable dual‐polymer‐functionalized nano‐GO conjugate (NGO‐PEG‐PEI) with ultra‐small size. Compared with free PEI and the GO‐PEI conjugate without PEGylation, NGO‐PEG‐PEI shows superior gene transfection efficiency without serum interference, as well as reduced cytotoxicity. Utilizing the NIR optical absorbance of NGO, the cellular uptake of NGO‐PEG‐PEI is shown to be enhanced under a low power NIR laser irradiation, owing to the mild photothermal heating that increases the cell membrane permeability without significantly damaging cells. As the results, remarkably enhanced plasmid DNA transfection efficiencies induced by the NIR laser are achieved using NGO‐PEG‐PEI as the light‐responsive gene carrier. More importantly, it is shown that our NGO‐PEG‐PEI is able to deliver small interfering RNA (siRNA) into cells under the control of NIR light, resulting in obvious down‐regulation of the target gene, Polo‐like kinase 1 (Plk1), in the presence of laser irradiation. This study is the first to use photothermally enhanced intracellular trafficking of nanocarriers for light‐controllable gene delivery. This work also encourages further explorations of functionalized nano‐GO as a photocontrollable nanovector for combined photothermal and gene therapies.  相似文献   

2.
Suspension cells can provide a source of cells for cellular reprogramming, but they are difficult to transfect by nonviral vectors. An efficient and safe nonviral vector (GO‐Fe3O4‐PEI complexes) based on iron oxide nanoparticle (Fe3O4)‐decorated graphene oxide (GO) complexed with polyethylenimine (PEI) for the first time is developed for delivering three individual episomal plasmids (pCXLE‐hOCT3/4‐shp53, pCXLE‐hSK, and pCXLE‐hUL) encoding pluripotent‐related factors of Oct3/4, shRNA against p53, Sox2, Klf4, L‐Myc, and Lin28 into human peripheral blood mononuclear cells (PBMCs) simultaneously. The combined treatment of magnetic stirring and near‐infrared (NIR)‐laser irradiation, which can promote contact between the complexes and floating cells and increase the cell membrane permeability, respectively, is used to conduct multiple physical stimulations for suspension PBMCs transfection. The PCR analysis shows that the combinatorial effect of magnetic targeting and photothermal stimulation obviously promoted the transfection efficiency of suspension cells. The transfected cells show positive expression of the pluripotency markers, including Nanog, Oct4, and Sox2, and have potential to differentiate into mesoderm and ectoderm cells. The results demonstrate that the GO‐Fe3O4‐PEI complex provides a safe, convenient, and efficient tool for reprogramming PBMCs into partially induced pluripotent stem cells, which are able to rapidly transdifferentiate into mesodermal lineages without full reprogramming.  相似文献   

3.
Chemodynamic therapy (CDT) has attracted considerable attention recently, but the poor reaction kinetics restrict its practical utility in clinic. Herein, glucose oxidase (GOx) functionalized ancient pigment nanosheets (SrCuSi4O10, SC) for programmable near‐infrared II (NIR‐II) photothermal‐enhanced starvation primed CDT is developed. The SC nanosheets (SC NSs) are readily exfoliated from SC bulk suspension in water and subsequently functionalized with GOx to form the nanocatalyst (denoted as SC@G NSs). Upon laser irradiation, the photothermal effect of SC NSs can enhance the catalytic activity of GOx for NIR‐II photothermal‐enhanced starvation therapy, which effectively eliminates intratumoral glucose and produces abundant hydrogen peroxide (H2O2). Importantly, the high photothermal‐conversion efficiency (46.3%) of SC@G NSs in second biological window permits photothermal therapy of deep‐seated tumors under the guidance of NIR‐II photoacoustic imaging. Moreover, the acidity amplification due to gluconic acid generation will in turn accelerate the degradation of SC NSs, facilitating the release of strontium (Sr) and copper (Cu) ions. Both the elevated H2O2 and the released ions will prime the Cu2+/Sr2+‐H2O2 reaction for enhanced CDT. Thus, a programmable NIR‐II photothermal‐enhanced starvation primed CDT is established to combat cancer with minimal side effects.  相似文献   

4.
Microenvironment‐responsive supramolecular assemblies have attracted great interest in the biomedical field due to their potential applications in controlled drug release. In this study, oxidation‐responsive supramolecular polycationic assemblies named CPAs are prepared for nucleic acid delivery via the host–guest interaction of β‐cyclodextrin based polycations and a ferrocene‐functionalized zinc tetraaminophthalocyanine core. The reactive oxygen species (ROS) can accelerate the disassembly of CPA/pDNA complexes, which would facilitate the release of pDNA in the complexes and further benefit the subsequent transfection. Such improvement in transfection efficiency is proved in A549 cells with high H2O2 concentration. Interestingly, the transfection efficiencies mediated by CPAs are also different in the presence or absence of light in various cell lines such as HEK 293 and 4T1. The single oxygen (1O2), produced by photosensitizers in the core of CPAs under light, increases the ROS amount and accelerates the disassembly of CPAs/pDNA complexes. In vitro and in vivo studies further illustrate that suppressor tumor gene p53 delivered by CPAs exhibits great antitumor effects under illumination. This work provides a promising strategy for the design and fabrication of oxidation‐responsive nanoassemblies with light‐enhanced gene transfection performance.  相似文献   

5.
Responsive multifunctional organic/inorganic nanohybrids are promising for effective and precise imaging‐guided therapy of cancer. In this work, a near‐infrared (NIR)‐triggered multifunctional nanoplatform comprising Au nanorods (Au NRs), mesoporous silica, quantum dots (QDs), and two‐armed ethanolamine‐modified poly(glycidyl methacrylate) with cyclodextrin cores (denoted as CD‐PGEA) has been successfully fabricated for multimodal imaging‐guided triple‐combination treatment of cancer. A hierarchical hetero‐structure is first constructed via integration of Au NRs with QDs through a mesoporous silica intermediate layer. The X‐ray opacity and photoacoustic (PA) property of Au NRs are utilized for tomography (CT) and PA imaging, and the imaging sensitivity is further enhanced by the fluorescent QDs. The mesoporous feature of silica allows the loading of a typical antitumor drug, doxorubicin (DOX), which are sealed by the polycationic gatekeepers, low toxic hydroxyl‐rich CD‐PGEA/pDNA complexes, realizing the co‐delivery of drug and gene. The photothermal effect of Au NRs is utilized for photothermal therapy (PTT). More interestingly, such photothermal effect also induces a cascade of NIR‐triggered release of DOX through the facilitated detachment of CD‐PGEA gatekeepers for controlled chemotherapy. The resultant chemotherapy and gene therapy for glioma tumors are complementary for the efficiency of PTT. This work presents a novel responsive multifunctional imaging‐guided therapy platform, which combines fluorescent/PA/CT imaging and gene/chemo/photothermal therapy into one nanostructure.  相似文献   

6.
Near‐infrared (NIR) light is widely used for noninvasive optical diagnosis and phototherapy. However, current research focuses on the first NIR window (NIR‐I, 650–950 nm), while the second NIR window (NIR‐II, 1000–1700 nm) is far less exploited. The development of the first organic photothermal nanoagent (SPNI‐II) with dual‐peak absorption in both NIR windows and its utilization in photothermal therapy (PTT) are reported herein. Such a nanoagent comprises a semiconducting copolymer with two distinct segments that respectively and identically absorb NIR light at 808 and 1064 nm. With the photothermal conversion efficiency of 43.4% at 1064 nm generally higher than other inorganic nanomaterials, SPNI‐II enables superior deep‐tissue heating at 1064 nm over that at 808 nm at their respective safety limits. Model deep‐tissue cancer PTT at a tissue depth of 5 mm validates the enhanced antitumor effect of SPNI‐II when shifting laser irradiation from the NIR‐I to the NIR‐II window. The good biodistribution and facile synthesis of SPNI‐II also allow it to be doped with an NIR dye for fluorescence‐imaging‐guided NIR‐II PTT through systemic administration. Thus, this study paves the way for the development of new polymeric nanomaterials to advance phototherapy.  相似文献   

7.
Light‐triggered drug delivery based on near‐infrared (NIR)‐mediated photothermal nanocarriers has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, a new paradigm of light‐responsive drug carrier that doubles as a photothermal agent is reported based on the NIR light‐absorber, Rb x WO3 (rubidium tungsten bronze, Rb‐TB) nanorods. With doxorubicin (DOX) payload, the DOX‐loaded Rb‐TB composite (Rb‐TB‐DOX) simultaneously provides a burst‐like drug release and intense heating effect upon 808‐nm NIR light exposure. MTT assays show the photothermally enhanced antitumor activity of Rb‐TB‐DOX to the MCF‐7 cancer cells. Most remarkably, Rb‐TB‐DOX combined with NIR irradiation also shows dramatically enhanced chemotherapeutic effect to DOX‐resistant MCF‐7 cells compared with free DOX, demonstrating the enhanced efficacy of combinational chemo‐photothermal therapy for potentially overcoming drug resistance in cancer chemotherapy. Furthermore, in vivo study of combined chemo‐photothermal therapy is also conducted and realized on pancreatic (Pance‐1) tumor‐bearing nude mice. Apart from its promise for cancer therapy, the as‐prepared Rb‐TB can also be employed as a new dual‐modal contrast agent for photoacoustic tomography and (PAT) X‐ray computed tomography (CT) imaging because of its high NIR optical absorption capability and strong X‐ray attenuation ability, respectively. The results presented in the current study suggest promise of the multifunctional Rb x WO3 nanorods for applications in cancer theranostics.  相似文献   

8.
Photoacoustic imaging‐guided photothermal therapy in the second near‐infrared (NIR‐II) window shows promise for clinical deep‐penetrating tumor phototheranostics. However, ideal photothermal agents in the NIR‐II window are still rare. Here, the emeraldine salt of polyaniline (PANI‐ES), especially synthesized by a one‐pot enzymatic reaction on sodium bis(2‐ethylhexyl) sulfosuccinate (AOT) vesicle surface (PANI‐ES@AOT, λmax ≈ 1000 nm), exhibits excellent dispersion in physiological environment and remarkable photothermal ability at pH 6.5 (photothermal conversion efficiency of 43.9%). As a consequence of the enhanced permeability and retention effect of tumors and the doping‐induced photothermal effect of PANI‐ES@AOT, this pH‐sensitive NIR‐II photothermal agent allows tumor acidity phototheranostics with minimized pseudosignal readout and subdued normal tissue damage. Moreover, the enhanced fluidity of vesicle membrane triggered by heating is beneficial for drug release and allows precise synergistic therapy for an improved therapeutic effect. This study highlights the potential of template‐oriented (or interface‐confined) enzymatic polymerization reactions for the construction of conjugated polymers with desired biomedical applications.  相似文献   

9.
Gene therapy is a potential method for treating a large range of diseases. Gene vectors are widely used in gene therapy for promoting the gene delivery efficiency to the target cells. Here, gold nanoparticles (AuNPs) coated with dimethyldioctadecylammonium bromide (DODAB)/dioleoylphosphatidylethanolamine (DOPE) are synthesized using a facile method for a new gene vector (DODAB/DOPE‐AuNPs), which possess 3‐ and 1.5‐fold higher transfection efficiency than those of DODAB‐AuNPs and a commercial transfection agent, respectively. Meanwhile, it is nontoxic with concentrations required for effective gene delivery. Imaging and quantification studies of cellular uptake reveal that DOPE increases gene copies in cells, which may be attributed to the smaller size of AuNPs/DNA complexes. The dissociation efficiency of DNA from the endocytic pathway is quantified by incubating with different buffers and investigated directly in the cells. The results suggest that DOPE increases the internalization of AuNPs/DNA complexes and promotes DNA release from early endosomes for the vector is sensitive to the anionic lipid membrane and the decreasing pH along the endocytic pathway. The new vector contains the potential to be the new alternative as gene delivery vector for biomedical applications.  相似文献   

10.
A self‐assembled DNA origami (DO)‐gold nanorod (GNR) complex, which is a dual‐functional nanotheranostics constructed by decorating GNRs onto the surface of DNA origami, is demonstrated. After 24 h incubation of two structured DO‐GNR complexes with human MCF7 breast cancer cells, significant enhancement of cell uptake is achieved compared to bare GNRs by two‐photon luminescence imaging. Particularly, the triangle shaped DO‐GNR complex exhibits optimal cellular accumulation. Compared to GNRs, improved photothermolysis against tumor cells is accomplished for the triangle DO‐GNR complex by two‐photon laser or NIR laser irradiation. Moreover, the DO‐GNR complex exhibits enhanced antitumor efficacy compared with bare GNRs in nude mice bearing breast tumor xenografts. The results demonstrate that the DO‐GNR complex can achieve optimal two‐photon cell imaging and photothermal effect, suggesting a promising candidate for cancer diagnosis and therapy both in vitro and in vivo.  相似文献   

11.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) genome‐editing system has shown great potential in biomedical applications. Although physical approaches, viruses, and some nonviral vectors have been employed for CRISPR/Cas9 delivery and induce some promising genome‐editing efficacy, precise genome editing remains challenging and has not been reported yet. Herein, second near‐infrared window (NIR‐II) imaging‐guided NIR‐light‐triggered remote control of the CRISPR/Cas9 genome‐editing strategy is reported based on a rationally designed semiconducting polymer brush (SPPF). SPPF can not only be a vector to deliver CRISPR/Cas9 cassettes but also controls the endolysosomal escape and payloads release through photothermal conversion under laser irradiation. Upon laser exposure, the nanocomplex of SPPF and CRISPR/Cas9 cassettes induces effective site‐specific precise genome editing both in vitro and in vivo with minimal toxicity. Besides, NIR‐II imaging based on SPPF can also be applied to monitor the in vivo distribution of the genome‐editing system and guide laser irradiation in real time. Thus, this study offers a typical paradigm for NIR‐II imaging‐guided NIR‐light‐triggered remote control of the CRISPR/Cas9 system for precise genome editing. This strategy may open an avenue for CRISPR/Cas9 genome‐editing‐based precise gene therapy in the near future.  相似文献   

12.
Herein, water‐dispersible carbon nano‐onion clusters (CNOCs) with an average hydrodynamic size of ≈90 nm are prepared by simply sonicating candle soot in a mixture of oxidizing acid. The obtained CNOCs have high photothermal conversion efficiency (57.5%), excellent aqueous dispersibility (stable in water for more than a year without precipitation), and benign biocompatibility. After polyethylenimine (PEI) and poly(ethylene glycol) (PEG) modification, the resultant CNOCs‐PEI‐PEG have a high photothermal conversion efficiency (56.5%), and can realize after‐wash photothermal cancer cell ablation due to their ultrahigh cellular uptake (21.3 pg/cell), which is highly beneficial for the selective ablation of cancer cells via light‐triggered intracellular heat generation. More interestingly, the cellular uptake of CNOCs‐PEI‐PEG is so high that the internalized nanoagents can be directly observed under a microscope without fluorescent labeling. Besides, in vivo experiments reveal that CNOCs‐PEI‐PEG can be used for photothermal/photoacoustic dual‐modal imaging‐guided photothermal therapy after intravenous administration. Furthermore, CNOCs‐PEI‐PEG can be efficiently cleared from the mouse body within a week, ensuring their excellent long‐term biosafety. To the best of the authors' knowledge, the first example of using candle soot as raw material to prepare water‐dispersible onion‐like carbon nanomaterials for cancer theranostics is represented herein.  相似文献   

13.
Photoimmunotherapy can not only effectively ablate the primary tumor but also trigger strong antitumor immune responses against metastatic tumors by inducing immunogenic cell death. Herein, Cu2MoS4 (CMS)/Au heterostructures are constructed by depositing plasmonic Au nanoparticles onto CMS nanosheets, which exhibit enhanced absorption in near‐infrared (NIR) region due to the newly formed mid‐gap state across the Fermi level based on the hybridization between Au 5d orbitals and S 3p orbitals, thus resulting in more excellent photothermal therapy and photodynamic therapy (PDT) effect than single CMS upon NIR laser irradiation. The CMS and CMS/Au can also serve as catalase to effectively relieve tumor hypoxia, which can enhance the therapeutic effect of O2‐dependent PDT. Notably, the NIR laser‐irradiated CMS/Au can elicit strong immune responses via promoting dendritic cells maturation, cytokine secretion, and activating antitumor effector T‐cell responses for both primary and metastatic tumors eradication. Moreover, CMS/Au exhibits outstanding photoacoustic and computed tomography imaging performance owing to its excellent photothermal conversion and X‐ray attenuation ability. Overall, the work provides an imaging‐guided and phototherapy‐induced immunotherapy based on constructing CMS/Au heterostructures for effectively tumor ablation and cancer metastasis inhibition.  相似文献   

14.
Cell adhesion of nanosystems is significant for efficient cellular uptake and drug delivery in cancer therapy. Herein, a near‐infrared (NIR) light‐driven biomimetic nanomotor is reported to achieve the improved cell adhesion and cellular uptake for synergistic photothermal and chemotherapy of breast cancer. The nanomotor is composed of carbon@silica (C@SiO2) with semi‐yolk@spiky‐shell structure, loaded with the anticancer drug doxorubicin (DOX) and camouflaged with MCF‐7 breast cancer cell membrane (i.e., mC@SiO2@DOX). Such biomimetic mC@SiO2@DOX nanomotors display efficient self‐thermophoretic propulsion due to a thermal gradient generated by asymmetrically spatial distribution. Moreover, the MCF‐7 cancer cell membrane coating can remarkably reduce the bioadhesion of nanomotors in biological medium and exhibit highly specific self‐recognition of the source cell line. The combination of effective propulsion and homologous targeting dramatically improves cell adhesion and the resultant cellular uptake efficiency in vitro from 26.2% to 67.5%. Therefore, the biomimetic mC@SiO2@DOX displays excellent synergistic photothermal and chemotherapy with over 91% MCF‐7 cell growth inhibition rate. Such smart design of the fuel‐free, NIR light‐powered biomimetic nanomotor may pave the way for the application of self‐propelled nanomotors in biomedicine.  相似文献   

15.
The tumor microenvironment (TME) has been increasingly recognized as a crucial contributor to tumorigenesis. Based on the unique TME for achieving tumor‐specific therapy, here a novel concept of photothermal‐enhanced sequential nanocatalytic therapy in both NIR‐I and NIR‐II biowindows is proposed, which innovatively changes the condition of nanocatalytic Fenton reaction for production of highly efficient hydroxyl radicals (?OH) and consequently suppressing the tumor growth. Evidence suggests that glucose plays a vital role in powering cancer progression. Encouraged by the oxidation of glucose to gluconic acid and H2O2 by glucose oxidase (GOD), an Fe3O4/GOD‐functionalized polypyrrole (PPy)‐based composite nanocatalyst is constructed to achieve diagnostic imaging‐guided, photothermal‐enhanced, and TME‐specific sequential nanocatalytic tumor therapy. The consumption of intratumoral glucose by GOD leads to the in situ elevation of the H2O2 level, and the integrated Fe3O4 component then catalyzes H2O2 into highly toxic ?OH to efficiently induce cancer‐cell death. Importantly, the high photothermal‐conversion efficiency (66.4% in NIR‐II biowindow) of the PPy component elevates the local tumor temperature in both NIR‐I and NIR‐II biowindows to substaintially accelerate and improve the nanocatalytic disproportionation degree of H2O2 for enhancing the nanocatalytic‐therapeutic efficacy, which successfully achieves a remarkable synergistic anticancer outcome with minimal side effects.  相似文献   

16.
Tumor hypoxia significantly diminishes the efficacy of reactive oxygen species (ROS)‐based therapy, mainly because the generation of ROS is highly oxygen dependent. Recently reported hypoxia‐irrelevant radical initiators (AIBIs) exhibit promising potential for cancer therapy under different oxygen tensions. However, overexpressed glutathione (GSH) in cancer cells would potently scavenge the free radicals produced from AIBI before their arrival to the specific site and dramatically limit the therapeutic efficacy. A synergistic antitumor platform (MoS2@AIBI‐PCM nanoflowers) is constructed by incorporating polyethylene‐glycol‐functionalized molybdenum disulfide (PEG‐MoS2) nanoflowers with azo initiator and phase‐change material (PCM). Under near‐infrared laser (NIR) irradiation, the photothermal feature of PEG‐MoS2 induces the decomposition of AIBI to produce free radicals. Furthermore, PEG‐MoS2 can facilitate GSH oxidation without releasing toxic metal ions, greatly promoting tumor apoptosis and avoiding the introduction of toxic metal ions. This is the first example of the use of intelligent MoS2‐based nanoflowers as a benign GSH scavenger for enhanced cancer treatment.  相似文献   

17.
Photothermal therapy (PTT) usually requires hyperthermia >50 °C for effective tumor ablation, which inevitably induces heating damage to the surrounding normal tissues/organs. Moreover, low tumor retention and high liver accumulation are the two main obstacles that significantly limit the efficacy and safety of many nanomedicines. To solve these problems, a smart albumin‐based tumor microenvironment‐responsive nanoagent is designed via the self‐assembly of human serum albumin (HSA), dc‐IR825 (a cyanine dye and a photothermal agent), and gambogic acid (GA, a heat shock protein 90 (HSP90) inhibitor and an anticancer agent) to realize molecular targeting‐mediated mild‐temperature PTT. The formed HSA/dc‐IR825/GA nanoparticles (NPs) can escape from mitochondria to the cytosol through mitochondrial disruption under near‐infrared (NIR) laser irradiation. Moreover, the GA molecules block the hyperthermia‐induced overexpression of HSP90, achieving the reduced thermoresistance of tumor cells and effective PTT at a mild temperature (<45 °C). Furthermore, HSA/dc‐IR825/GA NPs show pH‐responsive charge reversal, effective tumor accumulation, and negligible liver deposition, ultimately facilitating synergistic mild‐temperature PTT and chemotherapy. Taken together, the NIR‐activated NPs allow the release of molecular drugs more precisely, ablate tumors more effectively, and inhibit cancer metastasis more persistently, which will advance the development of novel mild‐temperature PTT‐based combination strategies.  相似文献   

18.
Currently, there is tremendous interest in the discovery of new and improved photothermal agents for near‐infrared (NIR)‐driven cancer therapy. Herein, a series of novel photothermal agents, comprising copper nanoparticles supported on defective porous carbon polyhedra are successfully prepared by heating a Cu‐BTC metal–organic framework (MOF) precursor at different temperatures (t) in the range 400–900 °C under an argon atmosphere. The copper nanoparticle size and carbon defect concentration in the obtained products (denoted herein as Cu@CPP‐t) increase with synthesis temperature, thus imparting the Cu@CPP‐t samples with distinct NIR absorption properties and photothermal heating responses. The Cu@CPP‐800 sample shows a remarkable photothermal conversion efficiency of 48.5% under 808 nm laser irradiation, representing one of the highest photothermal efficiencies yet reported for a carbon‐based photothermal agent. In vivo experiments conducted with tumor bearing nude Balb/c mice confirm the efficacy of Cu@CPP‐800 as a very promising NIR‐driven phototherapy agent for cancer treatment. Results encourage the wider use of MOFs as low cost precursors for the synthesis of carbon‐supported metal nanoparticle composites for photothermal therapy.  相似文献   

19.
Titanium dioxide (TiO2) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible–near infrared (Vis–NIR) region limits its application. Herein, multifunctional Fe@γ‐Fe2O3@H‐TiO2 nanocomposites (NCs) with multilayer‐structure are synthesized by one‐step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO2 in to hydrogenated TiO2 (H‐TiO2), thus improving the absorption in the Vis–NIR region. Based on the excellent solar‐driven photocatalytic activities of the H‐TiO2 shell, the Fe@γ‐Fe2O3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ‐Fe2O3@H‐TiO2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H‐TiO2 and γ‐Fe2O3, and the electronic structures of Fe@γ‐Fe2O3@H‐TiO2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core–shell NCs can serve as an NIR‐responsive photothermal agent for magnetic‐targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging.  相似文献   

20.
Self‐assembly of gold nanoparticles demonstrates a promising approach to realize enhanced photoacoustic imaging (PAI) and photothermal therapy (PTT) for accurate diagnosis and efficient cancer therapy. Herein, unique photothermal assemblies with tunable patterns of gold nanoparticles (including arcs, rings, ribbons, and vesicles) on poly(lactic‐co‐glycolic acid) (PLGA) spheres are constructed taking advantage of emulsion‐confined and polymer‐directed self‐assembly strategies. The influencing factors and formation mechanism to produce the assemblies are investigated in details. Both the emulsion structure and migration behaviors of amphiphilic block copolymer tethered gold nanoparticles are found to contribute to the formation of versatile photothermal assemblies. Hyaluronic acid‐modified R‐PLGA‐Au (RPA) exhibits outstanding photothermal performances under NIR laser irradiation, which is induced by strong plasmonic coupling between adjacent gold nanoparticles. It is interesting that secondary assembly of RPA can be triggered by NIR laser irradiation. Prolonged residence time in tumors is achieved after RPA assemblies are fused into superstructures with larger sizes, realizing real‐time monitoring of the therapeutic processes via PAI with enhanced photoacoustic signals. Notably, synergistic effect resulting from PTT‐enhanced chemotherapy is realized to demonstrate high antitumor performance. This work provides a facile strategy to construct flexible photothermal assemblies with favorable properties for imaging‐guided synergistic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号