首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Functional van der Waals heterojunctions of transition metal dichalcogenides are emerging as a potential candidate for the basis of next‐generation logic devices and optoelectronics. However, the complexity of synthesis processes so far has delayed the successful integration of the heterostructure device array within a large scale, which is necessary for practical applications. Here, a direct synthesis method is introduced to fabricate an array of self‐assembled WSe2/MoS2 heterostructures through facile solution‐based directional precipitation. By manipulating the internal convection flow (i.e., Marangoni flow) of the solution, the WSe2 wires are selectively stacked over the MoS2 wires at a specific angle, which enables the formation of parallel‐ and cross‐aligned heterostructures. The realized WSe2/MoS2‐based p–n heterojunction shows not only high rectification (ideality factor: 1.18) but also promising optoelectrical properties with a high responsivity of 5.39 A W?1 and response speed of 16 µs. As a feasible application, a WSe2/MoS2‐based photodiode array (10 × 10) is demonstrated, which proves that the photosensing system can detect the position and intensity of an external light source. The solution‐based growth of hierarchical structures with various alignments could offer a method for the further development of large‐area electronic and optoelectronic applications.  相似文献   

2.
Monolayer MoTe2, with the narrowest direct bandgap of ≈1.1 eV among Mo‐ and W‐based transition metal dichalcogenides, has attracted increasing attention as a promising candidate for applications in novel near‐infrared electronics and optoelectronics. Realizing 2D lateral growth is an essential prerequisite for uniform thickness and property control over the large scale, while it is not successful yet. Here, layer‐by‐layer growth of 2 in. wafer‐scale continuous monolayer 2H‐MoTe2 films on inert SiO2 dielectrics by molecular beam epitaxy is reported. A single‐step Mo‐flux controlled nucleation and growth process is developed to suppress island growth. Atomically flat 2H‐MoTe2 with 100% monolayer coverage is successfully grown on inert 2 in. SiO2/Si wafer, which exhibits highly uniform in‐plane structural continuity and excellent phonon‐limited carrier transport behavior. The dynamics‐controlled growth recipe is also extended to fabricate continuous monolayer 2H‐MoTe2 on atomic‐layer‐deposited Al2O3 dielectric. With the breakthrough in growth of wafer‐scale continuous 2H‐MoTe2 monolayers on device compatible dielectrics, batch fabrication of high‐mobility monolayer 2H‐MoTe2 field‐effect transistors and the three‐level integration of vertically stacked monolayer 2H‐MoTe2 transistor arrays for 3D circuitry are successfully demonstrated. This work provides novel insights into the scalable synthesis of monolayer 2H‐MoTe2 films on universal substrates and paves the way for the ultimate miniaturization of electronics.  相似文献   

3.
Van der Waals (vdW) p–n heterojunctions consisting of various 2D layer compounds are fascinating new artificial materials that can possess novel physics and functionalities enabling the next‐generation of electronics and optoelectronics devices. Here, it is reported that the WSe2/WS2 p–n heterojunctions perform novel electrical transport properties such as distinct rectifying, ambipolar, and hysteresis characteristics. Intriguingly, the novel tunable polarity transition along a route of n‐“anti‐bipolar”–p‐ambipolar is observed in the WSe2/WS2 heterojunctions owing to the successive work of conducting channels of junctions, p‐WSe2 and n‐WS2 on the electrical transport of the whole systems. The type‐II band alignment obtained from first principle calculations and built‐in potential in this vdW heterojunction can also facilitate the efficient electron–hole separation, thus enabling the significant photovoltaic effect and a much enhanced self‐driven photoswitching response in this system.  相似文献   

4.
Recently, monolayers of van der Waals materials, including transition metal dichalcogenides (TMDs), are considered ideal building blocks for constructing 2D artificial lattices and heterostructures. Heterostructures with multijunctions of more than two monolayer TMDs are intriguing for exploring new physics and materials properties. Obtaining in‐plane heterojunctions of monolayer TMDs with atomically sharp interfaces is very significant for fundamental research and applications. Currently, multistep synthesis for more than two monolayer TMDs remains a challenge because decomposition or compositional alloying is thermodynamically favored at the high growth temperature. Here, a multistep chemical vapor deposition (CVD) synthesis of the in‐plane multijunctions of monolayer TMDs is presented. A low growth temperature synthesis is developed to avoid compositional fluctuations of as‐grown TMDs, defects formations, and interfacial alloying for high heterointerface quality and thermal stability of monolayer TMDs. With optimized parameters, atomically sharp interfaces are successfully achieved in the synthesis of in‐plane artificial lattices of the WS2/WSe2/MoS2 at reduced growth temperatures. Growth behaviors as well as the heterointerface quality are carefully studied in varying growth parameters. Highly oriented strain patterns are found in the second harmonic generation imaging of the TMD multijunctions, suggesting that the in‐plane heteroepitaxial growth may induce distortion for unique material symmetry.  相似文献   

5.
2D molecular crystals (2DMCs) have attracted considerable attention because of their unique optoelectronic properties and potential applications. Taking advantage of the solution processability of organic semiconductors, solution self‐assembly is considered an effective way to grow large‐area 2DMCs. However, this route is largely blocked because a precise molecular design towards 2DMCs is missing and little is known about the relationship between 2D solution self‐assembly and molecular structure. A “phase separation” molecular design strategy towards 2DMCs is proposed and layer‐by‐layer growth of millimeter‐sized monolayer or few‐layer 2DMCs is realized. High‐performance organic phototransistors are constructed based on the 2DMCs with unprecedented photosensitivity (2.58 × 107), high responsivity (1.91 × 104 A W?1), and high detectivity (4.93 × 1015 Jones). This “phase separation” molecular design strategy provides a guide for the design and synthesis of novel organic semiconductors that self‐assemble into large‐area 2DMCs for advanced organic (opto)electronics.  相似文献   

6.
Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post‐silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom‐thick 2D structure. With the analogy to conventional silicon electronics, establishing a method to convert TMDC to p‐ and n‐type semiconductors is essential for various device applications, such as complementary metal‐oxide‐semiconductor (CMOS) circuits and photovoltaics. Here, a successful control of the electrical polarity of monolayer WSe2 is demonstrated by chemical doping. Two different molecules, 4‐nitrobenzenediazonium tetrafluoroborate and diethylenetriamine, are utilized to convert ambipolar WSe2 field‐effect transistors (FETs) to p‐ and n‐type, respectively. Moreover, the chemically doped WSe2 show increased effective carrier mobilities of 82 and 25 cm2 V?1s?1 for holes and electrons, respectively, which are much higher than those of the pristine WSe2. The doping effects are studied by photoluminescence, Raman, X‐ray photoelectron spectroscopy, and density functional theory. Chemically tuned WSe2 FETs are integrated into CMOS inverters, exhibiting extremely low power consumption ( ≈ 0.17 nW). Furthermore, a p‐n junction within single WSe2 grain is realized via spatially controlled chemical doping. The chemical doping method for controlling the transport properties of WSe2 will contribute to the development of TMDC‐based advanced electronics.  相似文献   

7.
Single‐ and few‐layer transition‐metal dichalcogenide nanosheets, such as WSe2, TaS2, and TaSe2, are prepared by mechanical exfoliation. A Raman microscope is employed to characterize the single‐layer (1L) to quinary‐layer (5L) WSe2 nanosheets and WSe2 single crystals with a laser excitation power ranging from 20 μW to 5.1 mW. Typical first‐order together with some second‐order and combinational Raman modes are observed. A new peak at around 308 cm?1 is observed in WSe2 except for the 1L WSe2, which might arise from interlayer interactions. Red shifting of the A1g mode and the Raman peak around 308 cm?1 is observed from 1L to 5L WSe2. Interestingly, hexagonal‐ and monoclinic‐structured WO3 thin films are obtained during the local oxidation of thinner (1L–3L) and thicker (4L and 5L) WSe2 nanosheets, while laser‐burned holes are found during the local oxidation of the WSe2 single crystal. In addition, the characterization of TaS2 and TaSe2 thin layers is also conducted.  相似文献   

8.
The ultrafast growth of high‐quality uniform monolayer WSe2 is reported with a growth rate of ≈26 µm s?1 by chemical vapor deposition on reusable Au substrate, which is ≈2–3 orders of magnitude faster than those of most 2D transition metal dichalcogenides grown on nonmetal substrates. Such ultrafast growth allows for the fabrication of millimeter‐size single‐crystal WSe2 domains in ≈30 s and large‐area continuous films in ≈60 s. Importantly, the ultrafast grown WSe2 shows excellent crystal quality and extraordinary electrical performance comparable to those of the mechanically exfoliated samples, with a high mobility up to ≈143 cm2 V?1 s?1 and ON/OFF ratio up to 9 × 106 at room temperature. Density functional theory calculations reveal that the ultrafast growth of WSe2 is due to the small energy barriers and exothermic characteristic for the diffusion and attachment of W and Se on the edges of WSe2 on Au substrate.  相似文献   

9.
Recently, piezoelectricity has been observed in 2D atomically thin materials, such as hexagonal‐boron nitride, graphene, and transition metal dichalcogenides (TMDs). Specifically, exfoliated monolayer MoS2 exhibits a high piezoelectricity that is comparable to that of traditional piezoelectric materials. However, monolayer TMD materials are not regarded as suitable for actual piezoelectric devices due to their insufficient mechanical durability for sustained operation while Bernal‐stacked bilayer TMD materials lose noncentrosymmetry and consequently piezoelectricity. Here, it is shown that WSe2 bilayers fabricated via turbostratic stacking have reliable piezoelectric properties that cannot be obtained from a mechanically exfoliated WSe2 bilayer with Bernal stacking. Turbostratic stacking refers to the transfer of each chemical vapor deposition (CVD)‐grown WSe2 monolayer to allow for an increase in degrees of freedom in the bilayer symmetry, leading to noncentrosymmetry in the bilayers. In contrast, CVD‐grown WSe2 bilayers exhibit very weak piezoelectricity because of the energetics and crystallographic orientation. The flexible piezoelectric WSe2 bilayers exhibit a prominent mechanical durability of up to 0.95% of strain as well as reliable energy harvesting performance, which is adequate to drive a small liquid crystal display without external energy sources, in contrast to monolayer WSe2 for which the device performance becomes degraded above a strain of 0.63%.  相似文献   

10.
Nonlinear 2D layered crystals provide ideal platforms for applications and fundamental studies in ultrathin nonlinear optical (NLO) devices. However, the NLO frequency conversion efficiency constrained by lattice symmetry is still limited by layer numbers of 2D crystals. In this work, 3R MoS2 with broken inversion symmetry structure are grown and proved to be excellent NLO 2D crystals from monolayer (0.65 nm) toward bulk‐like (300 nm) dimension. Thickness and wavelength‐dependent second harmonic generation spectra offer the selection rules of appropriate working conditions. A model comprising of bulk nonlinear contribution and interface interaction is proposed to interpret the observed nonlinear behavior. Polarization enhancement with two petals along staggered stacking direction appears in 3R MoS2 is first observed and the robust polarization of 3R MoS2 crystal is caused by the retained broken inversion symmetry. The results provide a new arena for realizing ultrathin NLO devices for 2D layered materials.  相似文献   

11.
2D transition metal dichalcogenides (TMDs) have exhibited strong application potentials in new emerging electronics because of their atomic thin structure and excellent flexibility, which is out of field of tradition silicon technology. Similar to 3D p–n junctions, 2D p–n heterojunctions by laterally connecting TMDs with different majority charge carriers (electrons and holes), provide ideal platform for current rectifiers, light‐emitting diodes, diode lasers and photovoltaic devices. Here, growth and electrical studies of atomic thin high‐quality p–n heterojunctions between molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) by one‐step chemical vapor deposition method are reported. These p–n heterojunctions exhibit high built‐in potential (≈0.7 eV), resulting in large current rectification ratio without any gate control for diodes, and fast response time (≈6 ms) for self‐powered photodetectors. The simple one‐step growth and electrical studies of monolayer lateral heterojunctions open up the possibility to use TMD heterojunctions for functional devices.  相似文献   

12.
Band‐like transport behavior of H‐doped transition metal dichalcogenide (TMD) channels in field effect transistors (FET) is studied by conducting low‐temperature electrical measurements, where MoTe2, WSe2, and MoS2 are chosen for channels. Doped with H atoms through atomic layer deposition, those channels show strong n‐type conduction and their mobility increases without losing on‐state current as the measurement temperature decreases. In contrast, the mobility of unintentionally (naturally) doped TMD FETs always drops at low temperatures whether they are p‐ or n‐type. Density functional theory calculations show that H‐doped MoTe2, WSe2, and MoS2 have Fermi levels above conduction band edge. It is thus concluded that the charge transport behavior in H‐doped TMD channels is metallic showing band‐like transport rather than thermal hopping. These results indicate that H‐doped TMD FETs are practically useful even at low‐temperature ranges.  相似文献   

13.
The fundamental light–matter interactions in monolayer transition metal dichalcogenides might be significantly engineered by hybridization with their organic counterparts, enabling intriguing optoelectronic applications. Here, atomically thin organic–inorganic (O–I) heterostructures, comprising monolayer MoSe2 and mono‐/few‐layer single‐crystal pentacene samples, are fabricated. These heterostructures show type‐I band alignments, allowing efficient and layer‐dependent exciton pumping across the O–I interfaces. The interfacial exciton pumping has much higher efficiency (>86 times) than the photoexcitation process in MoSe2, although the pentacene layer has much lower optical absorption than MoSe2. This highly enhanced pumping efficiency is attributed to the high quantum yield in pentacene and the ultrafast energy transfer between the O–I interface. Furthermore, those organic counterparts significantly modulate the bindings of charged excitons in monolayer MoSe2 via their precise dielectric environment engineering. The results open new avenues for exploring fundamental phenomena and novel optoelectronic applications using atomically thin O–I heterostructures.  相似文献   

14.
Chen  Mingrui  Zhang  Anyi  Liu  Yihang  Cui  Dingzhou  Li  Zhen  Chung  Yu-Han  Mutyala  Sai Praneetha  Mecklenburg  Matthew  Nie  Xiao  Xu  Chi  Wu  Fanqi  Liu  Qingzhou  Zhou  Chongwu 《Nano Research》2020,13(10):2625-2631

Orientation-controlled growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) may enable many new electronic and optical applications. However, previous studies reporting aligned growth of WSe2 usually yielded very small domain sizes. Herein, we introduced gold vapor into the chemical vapor deposition (CVD) process as a catalyst to assist the growth of WSe2 and successfully achieved highly aligned monolayer WSe2 triangular flakes grown on c-plane sapphire with large domain sizes (130 µm) and fast growth rate (4.3 µm·s−1). When the aligned WSe2 domains merged together, a continuous monolayer WSe2 was formed with good uniformity. After transferring to Si/SiO2 substrates, field effect transistors were fabricated on the continuous monolayer WSe2, and an average mobility of 12 cm2·V−1·s−1 was achieved, demonstrating the good quality of the material. This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.

  相似文献   

15.
2D planar structures of nonlayered wide‐bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.91 nm and an edge size of 45 µm via a controllable self‐confined chemical vapor deposition method is described. The enhanced spin‐triplet exciton (Zf, 2.98 eV) luminescence and polarization‐enhanced second‐harmonic generation based on the 2D CuBr flakes demonstrate the potential of short‐wavelength luminescent applications. Solar‐blind and self‐driven ultraviolet (UV) photodetectors based on the as‐synthesized 2D CuBr flakes exhibit a high photoresponsivity of 3.17 A W?1, an external quantum efficiency of 1126%, and a detectivity (D*) of 1.4 × 1011 Jones, accompanied by a fast rise time of 32 ms and a decay time of 48 ms. The unique nonlayered structure and novel optical properties of the 2D CuBr flakes, together with their controllable growth, make them a highly promising candidate for future applications in short‐wavelength light‐emitting devices, nonlinear optical devices, and UV photodetectors.  相似文献   

16.
p–n junctions play an important role in modern semiconductor electronics and optoelectronics, and field‐effect transistors are often used for logic circuits. Here, gate‐controlled logic rectifiers and logic optoelectronic devices based on stacked black phosphorus (BP) and tungsten diselenide (WSe2) heterojunctions are reported. The gate‐tunable ambipolar charge carriers in BP and WSe2 enable a flexible, dynamic, and wide modulation on the heterojunctions as isotype (p–p and n–n) and anisotype (p–n) diodes, which exhibit disparate rectifying and photovoltaic properties. Based on such characteristics, it is demonstrated that BP–WSe2 heterojunction diodes can be developed for high‐performance logic rectifiers and logic optoelectronic devices. Logic optoelectronic devices can convert a light signal to an electric one by applied gate voltages. This work should be helpful to expand the applications of 2D crystals.  相似文献   

17.
Recent reports on highly efficient photoelectrochemical solar cells withn-type WSe2 have prompted us to grown-type single crystals of WSe2 using a chemical vapour transport method. Different transporting agents have been used. It is seen that SeCl4 transporter leads to very large single crystals ofp-type WSe2, whereas the same transporting agent with excess amount of Se leads ton-type single crystals. PEC solar cells fabricated withp-type andn-type crystals thus grown have been reported and the results discussed.  相似文献   

18.
The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics.  相似文献   

19.
2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large‐area electronics and circuits strongly relies on wafer‐scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal‐guided selective growth (MGSG), is reported. The success of control over the transition‐metal‐precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p‐ and n‐type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom‐up complementary metal‐oxide‐semiconductor inverter based on p‐type WSe2 and n‐type MoSe2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.  相似文献   

20.
Silicene, a 2D silicon allotrope with unique low‐buckled structure, has attracted increasing attention in recent years due to its many superior properties. So far, epitaxial growth is one of the very limited ways to obtain high‐quality silicene, which severely impedes the research and application of silicene. Therefore, large‐scale synthesis of silicene is a great challenge, yet urgently desired. Herein, the first scalable preparation of free‐standing high‐quality silicene nanosheets via liquid oxidation and exfoliation of CaSi2 is reported. This new synthesis strategy successfully induces mild oxidation of the (Si2n)2n? layers in CaSi2 into neutral Si2n layers without damage of pristine silicene structure and promotes the exfoliation of stacked silicene layers. The obtained silicene sheets are dispersible and ultrathin ones with monolayer or few‐layer thickness and exhibit excellent crystallinity. As a unique 2D layered silicon allotrope, the silicene nanosheets are further explored as new anodes for lithium‐ion batteries and exhibit a nearly theoretical capacity of 721 mAh g?1 at 0.1 A g?1 and an extraordinary cycling stability with no capacity decay after 1800 cycles in contrast to previous most silicon anodes showing rapid capacity decay, thus holding great promise for energy storage and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号