首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 475 毫秒
1.
This paper discusses research in the use of biologically inspired spatial phased transducer arrays for the nondestructive evaluation of homogeneous and heterogeneous structural components. It is shown that beamforming, which is used by orb web spiders to locate their prey in a network of web fibers, can be achieved by applying weights and time delays to the tapped signals from a transducer array in a narrow frequency band to obtain desired directional sensitivities and optimal array gains. The resulting spatio-temporal filters are then used to detect, locate and quantify structural damage. The theory of beamsteering and beamforming for processing propagating wave data in damaged elastic media is discussed. Experimental results for homogeneous and heterogeneous plates are given to verify the theoretical discussions. Design considerations for the phased arrays are examined as are the benefits of nonlinear array geometries for better spatial coverage. The advantage of using adaptive over conventional beamforming is demonstrated with a Frost Constraint adaptive technique.  相似文献   

2.
Optimizing the radiation pattern of sparse periodic linear arrays   总被引:2,自引:0,他引:2  
We have developed a method for designing sparse periodic arrays. Grating lobes in the two-way radiation pattern are avoided by using different element spacings on transmission and reception. The transmit and receive aperture functions are selected such that the convolution of the aperture functions produces a desired effective aperture. A desired effective aperture is simply an aperture with an appropriate width, element spacing, and shape such that the Fourier transform of this function gives the desired two-way radiation pattern. If a synthetic aperture approach is used, an exact solution to the problem is possible. However, for conventional imaging, often only an approximation of the desired effective aperture can be found. Different strategies for obtaining these approximate solutions are described. The radiation pattern of a sparse array designed using the effective aperture concept is compared experimentally with the radiation patterns of a dense array, and sparse arrays with periodic and random element spacing. We show that the number of elements in a 128-element linear array can be reduced by at least four times with little degradation of the beam forming properties of the array  相似文献   

3.
Ultrasound phased arrays offer several advantages over single focused transducer technology, enabling electronically programmable synthesis of focal size and shape, as well as position. While phased arrays have been employed for medical diagnostic and therapeutic (hyperthermia) applications, there remain fundamental problems associated with their use for surgery. These problems stem largely from the small size of each array element dictated by the wavelength employed at surgical application frequencies (2-4 MHz), the array aperture size required for the desired focal characteristics, and the number of array elements and electronic drive channels required to provide RF energy to the entire array. The present work involves the theoretical and experimental examination of novel ultrasound phased arrays consisting of array elements larger than one wavelength, minimizing the number of elements in an aperture through a combination of geometric focusing, directive beams, and sparse random placement of array elements, for tissue ablation applications. A hexagonally packed array consisting of 108 8-mm-diameter circular elements mounted on a spherical shell was modeled theoretically and a prototype array was constructed to examine the feasibility of sparse random array configurations for focal surgery. A randomly selected subset of elements of the prototype test array (64 of 108 available channels) was driven at 2.1 MHz with a 64-channel digitally controlled RF drive system. The performance of the prototype array was evaluated by comparing field data obtained from theoretical modeling to that obtained experimentally via hydrophone scanning. The results of that comparison, along with total acoustic power measurements, suggest that the use of sparse random phased arrays for focal surgery is feasible, and that the nature of array packing is an important determinant to observed performance  相似文献   

4.
Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band.  相似文献   

5.
A new simple and cost-effective method has been developed for the fabrication of both plano-convex and plano-concave lens arrays with potentially important sag heights. The process is based on the use of potassium bromide (KBr) powder. At ambient temperature and under pressure, KBr powder is compressed on a molding die with the desired shape to form a solid lens array. The quality of the lens arrays has been assessed, and we present the first image produced by a converging KBr lens array.  相似文献   

6.
A method for reducing the number of elements in a 2-D array while minimizing degradation of the beam forming properties is described. The method relies on selecting a different arrangement of elements when the array is transmitting energy and when the array is receiving energy. The transmit and receive aperture functions are chosen to minimize the difference between the effective aperture of the sparse array and the effective aperture of a desired dense array. In a companion paper [see ibid vol. 43, pp. 7-14, 1996], the design of sparse linear arrays using the effective aperture method was described. Here, we extend this method to the design of 2-D arrays. Comparisons of the radiation patterns of a dense 2-D array and sparse 2-D arrays with random and periodic element spacing are given. Using the effective aperture method, we show that the number of elements in a 64×64 2-D array can be reduced by more than six times, and the elements in a 128×128 array can be reduced by more than 12 times, with little effect on the beam forming properties of the arrays  相似文献   

7.
With a fluidic alignment technique for aligning single-walled carbon nanotubes (SWNTs) over a large area on solid substrates, we can assemble SWNTs into parallel arrays with desired average separation. The number of SWNTs in the aligned arrays is controlled by the size of the microfluidic channels and the concentration of SWNTs in suspension. Most of the SWNTs are found to be aligned parallel to the orientation of the microfluidic channels. The performance of carbon nanotube field-effect transistors (CNTFETs) fabricated by this technique and the influences of impurities on the transistor characteristics are discussed.  相似文献   

8.
Optimization of wide-band linear arrays   总被引:1,自引:0,他引:1  
An optimization method is proposed for linear arrays to be used in ultrasound systems under wide-band operation. A fast algorithm, the threshold accepting, has been utilized to determine the element positions and weight coefficients of a linear array that generates a desired beam pattern. To reduce the computational burden in the optimization procedure, an efficient numerical routine for the beam pattern evaluation has been implemented. We address the optimization problem of both dense and sparse wideband arrays. In the first case, the goal is to minimize the side-lobe energy by varying the element weights; we compare the optimized beam pattern with that obtained with classical shading functions, showing that better results can be achieved with a wide-band optimization. We also consider the optimization of the layout (positions and weights) of a sparse linear array to achieve a desired beam pattern with a fixed or minimum number of array elements. The comparison of the proposed method with a narrow-band optimization algorithm is presented, showing that better performances (about -7 dB further reduction of the side-lobe level) can be achieved with a wide-band sparse array optimization. Further numerical simulations are given, showing that the proposed method yields better results than wideband sparse random arrays and periodic arrays with the same aperture width  相似文献   

9.
We extend the concepts of phase, polarization, and feedback control of matter to develop a general approach for guiding light in the nanoscale via nanoparticle arrays. The phase and polarization of the excitation source are first introduced as tools for control over the pathway of light at array intersections. Genetic algorithms are next applied as a systematic design tool, wherein both the excitation field parameters and the structural parameters of the nanoparticle array are optimized to make devices with desired functionality. Implications to research fields such as single molecule spectroscopy, spatially confined chemistry, optical logic, and nanoscale sensing are envisioned.  相似文献   

10.
We report a novel tilting exposure photolithography (TEL) technique where gradual pattern displacement is employed to achieve high-resolution features over large areas with reasonable exposure times. A linear array with features of the order of 100 nm has been realized using this technique with standard blue-light LED sources. TEL can be useful in the visible and ultraviolet spectra to create two-dimensional periodic structures. The created structures include the nanometric array of spots and lines. The proposed technique can be used as a writing method where complex features can be generated by moving the sample-holding leading to serpentine nanometric linear arrays.  相似文献   

11.
Wu MH  Paul KE  Whitesides GM 《Applied optics》2002,41(13):2575-2585
We describe a convenient lithographic technique that can produce simple, repetitive micropatterns over large areas (several square centimeters). The technique uses an illuminated array of micrometer-scale lenses to generate an array of optical patterns in an image plane located within micrometer distances from the lens array. A layer of photoresist, placed in the image plane, records the patterns. Microlenses with different sizes, profiles, composition, and indices of refraction produce corresponding patterns in exposed and developed photoresist. Both spherical and nonspherical microlenses were examined. Several types of optical element containing arrays of microlenses were fabricated and used to demonstrate that this technique can generate uniform micropatterns over large areas (>4 cm2) in a single exposure. The smallest features produced had dimensions of approximately 100 nm.  相似文献   

12.
In this paper, a newly developed point-matching method is presented to obtain a set of excitation coefficients of a linear array that generates a desired radiation pattern with arbitrarily suppressed sidelobe levels. This method can be used for linear arrays with nonuniform spacing and nonisotropic elements. The design examples presented show that the point-matching method is both effective and efficient  相似文献   

13.
Ultrasparse, ultrawideband arrays   总被引:2,自引:0,他引:2  
This paper investigates the properties of highly thinned ultrawideband (UWB) arrays. The design aim is high resolution and very low side radiation levels (SL). One- and two-dimensional ultrasparse UWB arrays can be designed to achieve both. The minimum available pulse-echo SL is shown to approach N(-4) where N is the number of elements in the transmit and receive arrays. Periodic thinning is shown to be superior to random thinning, and amplitude taper is shown to raise the SL. Two-dimensional curvilinear deployment of elements are shown to outperform rectilinear designs, and different transmit and receive arrays in pulse-echo systems are shown to outperform systems that use the same array for transmit and receive. Very low SL is achievable in an ultrasparse UWB system with so few elements that echo signal-to-noise ratio (SNR) rather than SL becomes the constraint on the minimum number of elements required by the system for the array to be useful for imaging. For example, in ultrasonic pulse-echo breast imaging, SL approximately -70 dB is desired to distinguish small cysts from tumors. A 2-D randomly thinned array requires about 10,000 elements. A 2-D ultrasparse UWB periodic array requires less than 100 to satisfy SL, a reduction of 100:1, but provides insufficient SNR. A 500-element, 7.5 MHz array operating with 4 cm penetration depth satisfies both. Experimental results demonstrate the theory.  相似文献   

14.
A method for computing array element amplitude and phase distributions for direct synthesis of multiple-focus field patterns using ultrasonic phased arrays is shown to be capable of producing desired field levels at a set of control points in the treatment volume. The complex pressure at any of these control points can be chosen to produce the desired power deposition at the point, including reducing the field level to avoid potential hot spots, thus providing a powerful tool for hyperthermia treatment planning. The method also allows the complex excitation vector to be weighted to reduce the dynamic range of the driving signals without disturbing the relative field levels at the control points, allowing near maximum power transfer from the array into the treatment volume.  相似文献   

15.
The fabrication of a dense (one-half wavelength element spacing) two-dimensional (2D) transducer array suitable for medical ultrasound imaging is unrealistic using existing technology. Consequently, there is interest in developing sparse 2D transducer arrays. In this paper, we present the results of a study looking at the broad-bandwidth radiation patterns of 72 different sparse 2D vernier arrays. Suppression of grating lobes is achieved by choosing a different arrangement of transmit and receive elements using an analogy with a vernier scale. The broad-bandwidth radiation patterns were investigated by simulating volumetric sector scan of a point target. We summarize these results by deriving a set of design curves that predicts the minimum number of elements, element spacing, and apodization required for a desired beam width and maximum secondary lobe. The results show that a sparse vernier array can be designed with significantly lower average and peak secondary lobes compared with a sparse random array with the same number of elements and aperture size  相似文献   

16.
The purpose of this paper was to evaluate the in vivo feasibility of using phased arrays for MRI guided ultrasound surgery. Two different array concepts were investigated: a spherically curved concentric ring array to move the focus along the central axis and a spherically curved 16 square element array to make the focus larger. Rabbit thigh muscles were exposed in vivo in a 1.5 T MRI scanner to evaluate the array performance. The results showed that both of the arrays performed as expected, and the focus could be moved and enlarged. In addition, adequate power could be delivered from the arrays to necrose in vivo muscle tissue in 10 s. This study was the first implementation of phased arrays for MRI guided ultrasound surgery. The results demonstrate that phased arrays have significant potential for noninvasive tissue coagulation  相似文献   

17.
Thinning and weighting of large planar arrays by simulated annealing   总被引:1,自引:0,他引:1  
Two-dimensional arrays offer the potential for producing three-dimensional acoustic imaging. The major problem is the complexity arising from the large number of elements in such arrays. In this paper, a synthesis method is proposed that is aimed at designing an aperiodic sparse two-dimensional array to be used with a conventional beam-former. The stochastic algorithm of simulated annealing has been utilized to minimize the number of elements necessary to produce a spatial response that meets given requirements. The proposed method is highly innovative, as it can design very large arrays, optimize both positions and weight coefficients, synthesize asymmetric arrays, and generate array configurations that are valid for every steering direction. Several results are presented, showing notable improvements in the array characteristics and performances over those reported in the literature.  相似文献   

18.
The feasibility of using intracavitary ultrasound phased arrays for thermal surgery of the prostate was investigated. A simulation study was performed which demonstrated the ability of phased arrays to generate necrosed tissue volumes over anatomically appropriate ranges (2-6 cm deep and >6 cm axially) and investigated the effects of varying frequency, sonication time, maximum temperature, and blood perfusion on the necrosed tissue volume. An advantage that phased arrays have over geometrically focused transducers is that they are able to electronically scan a single focus over a specified range very quickly. This study demonstrated that the necrosed tissue volume may be increased by more than a factor of 100 by using electronic scanning. Scan parameters that were investigated included foci spacing, scan width, perfusion, maximum temperature, and unequal weighting of the foci. An optimization was performed to select the foci weighting parameters such that a uniform thermal dose was achieved at the focal depth, providing a more uniformly heated target volume. Finally, the ability of linear ultrasound phased arrays to create necrosed tissue lesions was demonstrated experimentally in fresh beef liver using a single stationary focus and single focus scans generated by an aperiodic 0.83-MHz 57-element linear ultrasound phased array  相似文献   

19.
Two-dimensional arrays are required to implement two-dimensional phase aberration correction using traditional electronic correction techniques. A new transducer design, deformable in the elevation dimension, can be used to implement two-dimensional phase correction without using a full two-dimensional array. Phase correction in azimuth is achieved by altering the electronic phase delays of the elements. Phase correction in elevation is achieved by tilting the elements in elevation with piezoelectric actuators. Previously, such deformable arrays were fabricated by bonding PZT array elements to low frequency actuators. The construction of deformable arrays is simplified by using the actuator for both the element deflection and the generation of ultrasound. The new construction technique was used to fabricate a prototype 1×32 deformable array with a 3.5 MHz center frequency and an actuator flexure resonance of 3° at 1.3 kHz with a 300 Vpp sine wave. The prototype array was characterized and used to make B-scan images. Phase correction was simulated by tilting the elements on-line to alter the B-scan image and resulted in a cyst contrast reduction from 0.86 for the control to 0.76 with the elements tilted. Further characterization of the deformable array performance includes the frequency response of the actuator. Initial results from a 2×32 deformable array fabricated with the new construction technique are also presented. The 2×32 array configuration additionally offers the potential for on-line elevation focusing  相似文献   

20.
We coupled the radiation emitted by arrays of Josephson junctions oscillators to detector arrays of small Josephson junctions. The number of junctions in the detector array ranges up to 1536, which is typical for a 1V standard array operation. Evidence is presented that both uniform coupling of the emitted radiation over all the small junctions arrays and coherent emission of the Josephson oscillators can be achieved. PACS numbers: 74.50. + r, 74.40. + k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号