首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
用溶胶一凝胶法合成了掺钴的尖晶石锰酸锂Li1.05Co0.05Mn1.95O4,由于Co3+的引入使得材料结构更加稳定,循环稳定性增强.材料在0.1 C下首次放电比容量为105.2 mAh/g,循环20次后为104.3mAh/g,容量保持率为99.1%;1 C下首次放电比容量为92.4 mAh/g,循环20次后放电比容量为91.1mAh/g,容量保持率为98.5%.电池在充电前电荷转移电阻Rct很大,锂离子扩散系数较小,1C循环结束后电极的电荷转移电阻Rct最大为225.2Ω,0.5 C循环结束后电极的锂离子扩散系数DLi+最大为6.16×10-5 m2/s.  相似文献   

2.
梁英  范晶  贾志杰 《电池》2007,37(4):260-262
用固相反应法合成了纳米尺寸的Sn-SnO-Zn复合氧化物粉末,研究了其作为锂离子电池负极材料的电化学性能.XRD、SEM及电化学性能测试的结果显示:在800℃下焙烧的样品,首次放电比容量为772 mAh/g,首次库仑效率为60.1%,经20次循环后,放电比容量为376 mAh/g;在600℃下焙烧的样品,首次放电比容量为641 mAh/g,首次库仑效率为49.4%,经20次循环后,放电比容量只有272 mAh/g.  相似文献   

3.
以化学共沉淀法制备出的球形Ni0.5Co0.3Mn0.2CO3前驱体,合成了振实密度高达2.60 g/cm3的球形正极材料LiNi0.5Co0.3Mn0.2O2.研究表明,LiNi0.5Co0.3Mn0.2O2为10 μm左右的球形粉体,为纯相的α-NaFeO2层状结构.在2.7~4.3V,0.2 C倍率进行充放电,LiNi0.5Co0.3Mn0.2O2的首次放电比容量170.2 mAh/g,50次循环后容量保持率为94.3%;在2.7~4.6 V,在0.2 C倍率下放电,首次放电比容量为191.8 mAh/g,循环50次后容量保持率为90.5%.LiNi0.5Co0.3Mn0.2O2的首次循环伏安测试结果和交流阻抗测试结果进一步表明材料具有良好的电化学性能.  相似文献   

4.
蔡铖  张海燕  付海阔  肖方明 《电源技术》2021,45(12):1529-1532
采用高温固相法在不同条件下合成了一系列球形LiNi0.8Co0.1Mn0.1O2正极材料,并通过XRD、SEM、TEM、EDS等表征手段对其物相结构、形貌以及电化学性能进行了研究.结果表明,Li/Me(摩尔比)为1.07时合成的正极材料结晶良好,结构稳定,以0.2 C倍率在2.8~4.3 V电压范围内的首次放电比容量为200.4 mAh/g,首次充放电效率为86.7%,1 C放电比容量为189.5 mAh/g,50次循环之后的放电比容量为178.3 mAh/g,此时容量保持率高达94.1%.继续循环至100次比容量还有145.7 mAh/g,容量保持率为76.9%.  相似文献   

5.
以球形Ni(OH)2、Co3O4、Mn3O4及LiOH为原料,用超细球磨-喷雾干燥法得到前驱体,再用高温固相法制备正极材料LiNi1/3Co1/3 Mn1/3O2.在900℃下焙烧12h制备的材料具有良好的六方单相层状α-NaFeO结构,粒径均匀地分布于1~3 μm;在2.8~4.3 V循环,0.1C、2.0C首次放电比容量分别为162.5 mAh/g、138.6 mAh/g,第30次0.1C循环的容量保持率为98.8%,;当充电截止电压提高至4.6V时,0.1C放电比容量增加至约200 mAh/g,且循环性能稳定.  相似文献   

6.
用共沉淀法合成了球形Ni0.8Co0.2(OH)2,然后将其与LiOH·H2O混合后在不同高温合成条件下制得LiNi0.8Co0.2O2。系统地研究了保温时间、Li/(Ni Co)配比、焙烧温度对合成的Li-Ni0.8Co0.2O2材料的电化学性能的影响。电化学充放电循环测试结果表明:在优化条件下制得的LiNi0.8Co0.2O2材料表现出优良的电化学性能,其首次充电容量达到219.3mAh/g,首次放电容量达到195.4mAh/g,首次充放电效率89.1%,循环20次后放电容量仍能保持在185mAh/g。  相似文献   

7.
丁银  王晓清  阮艳莉  张磊  汤恩旗 《电源技术》2012,36(9):1266-1269
采用高温固相法合成尖晶石LiMn2O4,从掺杂Al3+稳定晶体结构和包覆抑制锰的溶解两方面来改善尖晶石LiMn2O4的高温电化学性能。实验表明,改善后的正极材料在高温50℃且0.5 C(C=120 mAh/g)下的首次放电比容量为93.3 mAh/g,循环50次后的放电比容量为82.8 mAh/g,比空白样品提高34.1 mAh/g,容量保持率达到88.7%,比空白样品提高39.8%。  相似文献   

8.
用超声波振荡法,将粒径约为20 nm、用溶胶-凝胶法合成的TiO2颗粒包覆在流变相法合成的LiMn2O4表面,再在600 ℃下处理2 h,得到TiO2包覆的尖晶石LiMn2O4.在3.0~4.4 V,产物以1.0 C充放电的首次放电比容量为121.7 mAh/g,第100次循环的放电比容量为108.3 mAh/g;以0.5 C充放电的首次放电比容量为126.7 mAh/g,第200次循环的容量保持率为86.0%.  相似文献   

9.
在磷酸钒锂材料中掺杂Mg2+,Mg2+取代锂位,其化学式可以写为(Li1-xMgx/2)3V2(PO4)3,Mg(OH)2作为镁源,按化学反应方程式中化学计量比称取LiOH.H2O,NH4H2PO4,V2O5,Mg(OH)2(x=0.01、0.05、0.1)和柠檬酸,其中柠檬酸用量为n(V)∶n(柠檬酸)=2∶2,煅烧温度为700℃,煅烧时间为8 h,合成了(Li1-xMgx/2)3V2(PO4)3正极材料。研究了Mg2+掺杂量对材料性能的影响,考察了x=0、0.01、0.05、0.1四种情况。结果显示,x=0.05时材料具有较好的充放电性能。在2.7~4.5 V电压范围内进行充放电循环测试,0.05 C充放电倍率下,其首次放电比容量为145 mAh/g,库仑效率高达90%以上,0.1 C循环20次后,放电比容量仍为131 mAh/g;0.2 C循环时,首次放电比容量为140 mAh/g左右,20次循环后仍为130 mAh/g以上;0.5 C循环20次后,放电比容量为104 mAh/g。  相似文献   

10.
郭宇  黄玲  肖方明  王英  唐仁衡 《电源技术》2020,(1):13-16,65
采用共沉淀法合成Li[(Ni0.88Co0.12)0.90(Ni0.80Co0.15Al0.05)0.10]O2正极材料,通过调控Ni、Co、Al元素在材料内部形成梯度分布来提升材料的稳定性,采用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电子探针(EPMA)及电化学测试等方法对材料性能进行表征。结果表明:三元正极材料具有良好的层状结构,Ni、Co和Al元素呈梯度分布。以0.2 C进行充放电,首次放电比容量为191.2 mAh/g,以0.2 C充1 C放电循环100次,电池比容量由174.4 mAh/g下降到111.1 mAh/g,容量保持率为63.7%。  相似文献   

11.
以Ni0.5Co0.2Mn0.3(OH)2和Li2CO3为原料,TiO2和ZnO为掺杂剂,制备出不同含量钛锌离子复合掺杂的锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2。用XRD、SEM、恒电流充放电、交流阻抗法和循环伏安方法分别研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2的结构、形貌和其电化学性能的影响。结果表明3%(摩尔分数)的Ti、Zn离子复合掺杂能有效提高LiNi0.5Co0.2Mn0.3O2的倍率放电能力和循环性能。在1C和2C的充放电倍率下,首次放电容量分别为170.4mAh/g和164.8mAh/g,经过50次充放电循环后容量保持率分别为96.3%和94.7%,具有优良的电化学性能。  相似文献   

12.
Li(Ni1/3Co1/3Mn1/3)1-ySnyO2材料的合成及性能研究   总被引:1,自引:1,他引:0  
康亮  陈猛  武洪彬  王文刚 《电池工业》2010,15(4):226-229
采用碳酸盐共沉淀法制备Li(Ni1/3Co1/3Mn1/3)1-ySnyO2(y=0,0.01,0.02,0.05,0.10)。通过XRD、SEM测试对其晶型结构、组织形貌进行了分析,交流阻抗法(AC)和充放电性能测试对其电化学性能进行了研究。实验表明,制备的样品均具有较好的层状结构,其中Li(Ni1/3Co1/3Mn1/3)0.98Sn0.02O2性能最佳,以0.5C循环充放电时,首次放电比容量达到173.31mAh/g,30次循环后,放电比容量为149.55mAh/g,容量保持率为86.29%。  相似文献   

13.
通过化学共沉淀和高温固相反应法合成不同Li/M比(Li为锂元素的物质的量,M为过渡金属元素总物质的量)的LiNi0.7Co0.1Mn0.2O2正极材料,采用XRD、SEM、恒流充放电测试系统和电化学工作站研究Li/M比对材料结构、形貌和电化学性能的影响。结果表明,Li/M比为1.10的LiNi0.7Co0.1Mn0.2O2正极材料层状结构完整,颗粒形貌良好,电化学性能最优。0.2 C充放电条件下的首次放电比容量达到204.0 mAh/g;1.0 C充放电条件下循环充放50圈后放电比容量为187.0 mAh/g,容量保持率达到97.2%。  相似文献   

14.
韩恩山  王硕  朱令之  徐慧 《电源技术》2012,36(7):953-956
在溶胶凝胶法中,螯合剂的含量对材料的性能有较大的影响。采用柠檬酸溶胶凝胶法制备了尖晶石掺钴锰酸锂LiCo0.05Mn1.95O4粉末。利用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、恒流充放电、电化学阻抗(EIS)、循环伏安(CV)等分析方法研究了柠檬酸含量对材料的结构和电化学性能的影响。充放电结果表明,当柠檬酸和总金属离子摩尔比为1∶1时制备出的材料具有良好的电化学性能;在3.0~4.3 V之间进行充放电,0.1 C下,材料首次放电比容量达到120.7 mAh/g,循环10次后保持在118.2 mAh/g,1 C下循环20次后放电比容量保持在80 mAh/g左右。SEM表明材料是纳米级别。  相似文献   

15.
锰酸锂正极材料在充放电循环过程中容量衰减严重,严重影响其大规模应用。针对其容量衰减严重的问题,通过固相制备出Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4正极材料,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)、充放电测试、CV和EIS对其结构、形貌及电化学性能进行了研究。结果表明,Mg2+、Na+的掺杂未改变Li Mn2O4的结构。在0.2 C下,样品Li Mn2O4和Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的首次放电比容量分别为127.1 m Ah/g和123.3 m Ah/g,充放电循环100次后,其容量保持率分别为77.34%和94.81%,Mg2+、Na+掺杂后,材料的初始放电比容量略有降低,但循环性能明显得到了改善。在10 C下,Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的放电比容量高达92.4 m Ah/g。实验表明,Mg2+、Na+的共同掺杂有效改善了Li Mn2O4的循环稳定性和倍率性能。  相似文献   

16.
尖晶石LiMn2O4的合成及微量Fe的掺杂改性   总被引:2,自引:0,他引:2  
以不同材料作为锰源,采用溶胶-凝胶法(sol-gel)合成了尖晶石LiMn2O4。电化学测试结果表明,采用硝酸锰作为锰源合成的尖晶石LiMn2O4具有相对较佳的电化学性能。进而采用碳酸锂、硝酸锰作为锂源和锰源合成了化学式为LiFexMn2-xO4的尖晶石锂锰氧化物材料(x=0.05、0.1、0.2、0.3、0.4),发现当x=0.1时,掺铁尖晶石LiMn2O4的初始放电容量达119 mAh/g,循环95次后容量保持率为86%,这一结果接近商品化尖晶石LiMn2O4。  相似文献   

17.
用溶胶-凝胶法结合高温后退火处理合成了掺杂Cr的LiNi0.5-0.5yCryMn1.5-0.5yO4(y=0.05,0.10,0.15,0.00),通过X射线衍射(XRD)、恒流充放电测试表征了材料的结构、电化学性能。结果表明,在电压范围为3.5~5.0 V内,LiNi0.45Cr0.1Mn1.45O4电化学性能最好,首次放电容量可达136.2mAh/g,0.1 C循环20次后,容量保持率99.7%;1 C倍率循环50次后,容量仍然有116.2 mAh/g,基本不衰减,大倍率循环有良好的容量和循环性能。  相似文献   

18.
采用溶胶凝胶法制备尖晶石型高电压正极材料LiNi_(0.5)Mn_(1.5)O_4,并掺杂F-与之对比。分别采用X射线衍射仪、电子扫描显微镜、热重分析仪、电化学工作站和充放电测试仪对合成材料的物相、形貌和电化学性能进行表征。结果表明,0.5C倍率下LiNi_(0.5)Mn_(1.5)O_4首次放电比容量高达141.6 mAh/g,接近于理论比容量146.7 mAh/g。提高倍率40次循环后,5C比容量仍有111.8 mAh/g,而F-掺杂样品仅有92 mAh/g。然后从5C返回到1C,比容量为129.9 mAh/g,与1C初始容量相比,容量保持率高达96.4%,LiNi_(0.5)Mn_(1.5)O_4显示出更加优异的倍率循环性能。  相似文献   

19.
采用溶胶-凝胶-自蔓延燃烧法合成了LiNi0.5Mn1.5O4和LiCr0.1Ni0.45Mn1.45O4两种高电压正极材料。通过X射线衍射(XRD)表明铬离子掺杂未改变LiNi0.5Mn1.5O4的晶型结构,但改善了其晶型生长。扫描电镜(SEM)表明两种样品呈规则正八面体外形,颗粒较均匀,LiNi0.5Mn1.5O4平均粒径大约为400 nm,LiCr0.1Ni0.45Mn1.45O4平均粒径大约为200 nm。电化学性能测试结果表明,在1 C放电倍率下,两种电池的首次放电比容量分别为111.0 mAh/g和121.5 mAh/g,以容量保持率为首次放电比容量85%为截止条件,分别可以实现32个和51个稳定循环。在此条件下,LiCr0.1Ni0.45Mn1.45O4/Li电池的平均中值电压为4.55 V,略高于LiNi0.5Mn1.5O4/Li电池4.51 V。倍率性能测试结果表明,LiCr0.1Ni0.45Mn1.45O4/Li电池及LiNi0.5Mn1.5O4/Li电池在0.5 C、1 C下放电比容量分别可保持0.2 C时的91.9%、87.1%和91.1%、83.6%。铬离子掺杂可明显改善LiNi0.5Mn1.5O4的综合性能。  相似文献   

20.
以氧化锌(ZnO)为添加剂,制备了加锌MLNi_(3.9)Co_(0.6)Mn_(0.3)Al_(0.3)贮氢合金电极。添加0.5%的ZnO制作的电池,初始开路电压为1.20 V;在1.0~1.6 V循环,0.2 C首次放电比容量达到291.7 mAh/g,第100次循环的容量保持率为95.88%,相比于空白MLNi_(3.9)Co_(0.6)Mn_(0.3)Al_(0.3)电极,分别提高了0.39 V、31.6 mAh/g和5.70%。用该电极制作的200 Ah镍氢动力电池,搁置电压大于1.20 V,在0.8~1.6 V循环,0.2 C首次放电容量达到200 Ah,而未加锌的合金电极制作的电池,第3次循环才达到额定容量。ZnO的加入不影响电池标准循环寿命、荷电保持和容量恢复能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号