首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wong CL  Ho HP  Chan KS  Wu SY 《Applied optics》2005,44(23):4830-4837
We present a new technique based on the spectral characteristics associated with the surface plasmon resonance (SPR) effect for studying lubricants in elastohydrodynamic (EHD) dimples. The pressure inside the EHD dimple causes a localized change of the refractive index (RI) of the entrapped lubricant. This also results in a shift in the spectral SPR absorption dip. By monitoring the color changes within the SPR image, one can obtain a direct measurement of the RI of the entrapped lubricant, from which the pressure distribution within the elastohydrodynamic lubrication (EHL) dimple can be deduced by means of a predetermined relation of pressure and RI of the tested lubricant. Dimples formed with the lubricants PB 2400 and H 1900 were studied in our experiments. Because SPR is sensitive only to the RI variation within a thin region (approximately one wavelength) close to the sensor's surface, the new technique does not require any measurement of the absolute film thickness of the lubricant. This is much simpler than the existing two-beam interferometric technique for measuring the RI of lubricants in EHD dimples, which requires simultaneous measurements of optical film thickness by use of two beams of different angles of incidence. In light of this advantage we anticipate that the new technique can be applied to pressure field mapping in highly loaded rolling and sliding EHL contacts.  相似文献   

2.
A simple fiber sensor capable of simultaneous measurement of liquid level and refractive index (RI) is proposed and experimentally demonstrated. The sensing head is an all-fiber modal interferometer manufactured by splicing an uncoated single-mode fiber with two short sections of multimode fiber. The interference pattern experiences blue shift along with an increase of axial strain and surrounding RI. Owing to the participation of multiple cladding modes with different sensitivities, the height and RI of the liquid could be simultaneously measured by monitoring two dips of the transmission spectrum. Experimental results show that the liquid level and RI sensitivities of the two dips are 245.7 pm/mm, ?38 nm/RI unit (RIU), and 223.7 pm/mm, ?62 nm/RIU, respectively. The approach has distinctive advantages of easy fabrication, low cost, and high sensitivity for liquid level detection with the capability of distinguishing the RI variation simultaneously.  相似文献   

3.
Graphene is a zero band-gap semi-metal with remarkable electromagnetic and mechanical characteristics. This study is the first ever attempt to use graphene in the surface plasmon resonance (SPR) sensor as replacement material for gold/silver. Graphene, comprised of a single atomic layer of carbon, is a purely two-dimensional material and it is an ideal candidate for use as a biosensor because of its high surface-to-volume ratio. This sensor is based on the resonance occasion of the surface plasmon wave (SPW) according to the dielectric constants of each metal film and detected material in gas or aqueous phase. Graphene in the SPR sensor is expected to enlarge the range of analyte to bio-aerosols based on the superior electromagnetic properties of graphene. In this study, a SPR-based fiber optic sensor coated with multi-layered graphene is described. The multi-layered graphene film synthesized by chemical vapor deposition (CVD) on Ni substrate was transferred on the sensing region of an optical fiber. The graphene coated SPR sensor is used to analyze the interaction between structured DNA biotin and Streptavidin is analyzed. Transmitted light after passing through the sensing region is measured by a spectrometer and multimeter. As the light source, blue light which of 450 to 460 nm in wavelength was used. We observed the SPR phenomena in the sensor and show the contrary trends between bare fiber and graphene coated fiber. The fabricated graphene based fiber optic sensor shows excellent detection sensitivity of the interaction between structured DNA and Streptavidin.  相似文献   

4.
Chen JH  Zhao JR  Huang XG  Huang ZJ 《Applied optics》2010,49(29):5592-5596
A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.  相似文献   

5.
The Harrick AutoSeagull variable angle reflection accessory for Fourier transform infrared (FT-IR) spectrometers provides access to various spectroscopic techniques in a highly flexible platform. In particular, its ability to perform total internal reflection measurements is of interest because it also forms the basis for surface plasmon resonance (SPR) spectroscopy in prism-based configurations. The work presented here discusses the modification of the AutoSeagull to perform SPR spectroscopy, allowing for easy incorporation of the technique into most common FT-IR spectrometers. The wavelength dependency of the dielectric constant of the plasmon-supporting metal (in our case, gold) is largely responsible for the sensitivity attributed to changes in the sample's refractive index (RI) monitored by SPR spectroscopy. Furthermore, the optical properties of gold are such that when near-infrared (NIR) and/or mid-infrared (mid-IR) wavelengths are used to excite surface plasmons, higher sensitivities to RI changes are experienced compared to surface plasmons excited with visible wavelengths. The result is that in addition to instrumental simplicity, SPR analysis on FT-IR spectrometers, as permitted by the modified AutoSeagull, also benefits from the wavelength ranges accessible. Adaptation of the AutoSeagull to SPR spectroscopy involved the incorporation of slit apertures to minimize the angular spread reaching the detector, resulting in sharper SPR "dips" but at the cost of noisier spectra. In addition, discussion of the system's analytical performance includes comparison of dip quality as a function of slit size, tailoring of the dip minima location with respect to incident angle, and sensitivity to bulk RI changes.  相似文献   

6.
This paper describes simulation and experimental methods for designing a D-shaped surface plasmon resonance (SPR) fibre sensor. The sensor consists of two set-up approaches. Finite element method is used in simulation on the fibre sensor device. Two experimental methods for detecting relative intensity are used by varying the wavelength of the optical signal sources and the thickness of gold layer coated on the D-shaped fibre. In the first method, the sensor device works by detecting the relative intensity of two optical signal sources having different wavelengths. In the second set-up, the relative intensity between two D-shaped fibres coated with different thicknesses of gold is measured when a single signal source is launched at the input. The difference in intensities of the signal outputs is used to estimate the refractive index at the sensing region. A prototype SPR D-shaped fibre sensor has been fabricated and the experimental results show good agreement with simulation.  相似文献   

7.
Temperature-dependent measurements of surface coverage and interfacial kinetics remain relatively unexploited in thin-film sensing applications that rely on optical surface-sensitive techniques such as surface plasmon resonance spectroscopy (SPR). These techniques are inherently sensitive to the optical properties of the bulk solution in contact with the thin film; therefore, quantitative thin-film sensing requires accurate refractive index data for bulk solutions at the conditions of interest. The refractive index for bulk solutions depends strongly on temperature, solution composition, and optical excitation wavelength. In this paper, we demonstrate the use of critical angle measurements for accurate, independent determination of the refractive index of bulk solutions and present results for different experimental conditions of solution temperature, solution concentration, and excitation wavelength. We also examine the implications of incorrect accounting of the bulk solution for the case of two-color SPR sensing of ultrathin organic films. This sensing technique, which depends inherently on the contrast in the dispersion of the refractive index of the film and the bulk solution, can be over 1 order of magnitude more sensitive than single-color SPR measurements. Critical angle measurements can be implemented in conjunction with SPR measurements and will be invaluable for thin film sensing application in which the bulk refractive index varies during the experiment, for example, in temperature-dependent SPR measurements, or for applications in which the solution refractive index is not known.  相似文献   

8.
The proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode-multimode-single-mode (SMS)-based fiber structure. The influence of the coreless-MMF diameter on the external refractive index (RI) variation permitted the sensing head with the lowest MMF diameter (i.e., 55 μm) to exhibit the maximum sensitivity (2800 nm/RIU). This approach also implied an ultrahigh sensitivity of this fiber device to temperature variations in the liquid RI of 1.43: a maximum sensitivity of -1880 pm/°C was indeed attained. Therefore, the results produced were over 100-fold those of the typical value of approximately 13 pm/°C achieved in air using a similar device. Numerical analysis of an evanescent wave absorption sensor was performed, in order to extend the range of liquids with a detectable RI to above 1.43. The suggested model is an SMS fiber device where a polymer coating, with an RI as low as 1.3, is deposited over the coreless MMF; numerical results are presented pertaining to several polymer thicknesses in terms of external RI variation.  相似文献   

9.
Bhatia P  Gupta BD 《Applied optics》2011,50(14):2032-2036
We have experimentally studied the surface plasmon resonance (SPR)-based fiber-optic refractive index sensor incorporating a high-index dielectric layer using the wavelength interrogation method. Silver and gold have been used as SPR active metals followed by a high-index dielectric layer of silicon. Experimental results predict a redshift in the resonance wavelength with the increase in the refractive index of the sensing layer for a given thickness of the silicon layer. Further, as the thickness of the silicon layer increases, the sensitivity of the sensor increases. The upper limit of the silicon film thickness for the enhancement of the sensitivity has been found to be around 10 nm. The experimental results obtained on sensitivity match qualitatively with the theoretical results obtained using the N-layer model and the ray approach. The increase in sensitivity is due to the increase in the electric field intensity at the silicon-sensing-region interface. In addition to an increase in sensitivity, the silicon layer can be used to tune the resonance wavelength and can protect the metal layer from oxidation and hence can improve the durability of the probe.  相似文献   

10.
This paper presents a system-on-chip circuit architecture that enables the extraction of concentration information directly from a surface plasmon resonance (SPR) probe, independent of ambient fluctuations in the reference medium, temperature, and background light. Compensation for these baseline (bulk) interferences is embedded into the baseline integration state of the photodetectors in the optical path, creating a ldquoflat linerdquo for the baseline [no analyte present/bulk refractive index (RI)] condition and the characteristic SPR dips for the measurement (analyte present) condition. A resolution of 2 times 10-4 RI units is possible with this system, comparable to the 5 times 10-4 RI unit resolution of conventional signal processing (software-based) approaches to processing the same data using a similar framework. This approach demonstrates experimentally the capability of the dip-based SPR probe in a portable footprint for detecting RI at resolution levels suitable for practical applications of these probes to field environments.  相似文献   

11.
A novel instrumental method for angle and wavelength modulated surface plasmon resonance (SPR) spectroscopy is applied to the problem of spectral selectivity in SPR experiments. For transparent analytes, SPR reflectivity data are reduced to a two-dimensional (2D) spectrum of resonance wavelength versus incident angle, lambdaSPR(theta). This spectrum encodes the refractive index (RI) dispersion of the analyte and illustrates the increased SPR spectral shift per unit RI change at longer wavelengths (lower angle). For the absorbing analyte magnesium phthalocyanine (MgPc), the 2D data reduction method is complicated by the way the SPR and MgPc-based spectral peaks mix. Fresnel reflectivity models support experimental observations of spectral branching and qualitative fingerprints in the form of branched spectra, and difference reflectivity deltaR(lambda, theta) contour plots are presented.  相似文献   

12.
Parallel scan spectral surface plasmon resonance imaging   总被引:1,自引:0,他引:1  
Liu L  He Y  Zhang Y  Ma S  Ma H  Guo J 《Applied optics》2008,47(30):5616-5621
We describe a parallel scan spectral surface plasmon resonance (SPR) imaging technique. We demonstrate experimentally, with a line-shaped light illumination, that an image acquired with an area CCD detector provides both SPR wavelength information and one-dimensional spatial distribution. Thus two-dimensional distribution of the refractive index of the entire sensing plane can be obtained with a one-dimensional optical line parallel scan. The technique offers advantages of both high sensitivity and high throughput, and could have potential applications in biochips analysis.  相似文献   

13.
A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the refractive index of a sample.  相似文献   

14.
This paper presents a fully integrated hardware solution to processing signals obtained from biochemical sensors that employ surface plasmon resonance (SPR)-based transduction mechanisms. Results are discussed in the context of previous software-based, partial hardware-based, and alternative fully hardware-based solutions for portable SPR systems. As in previous alternative design approaches, this system-on-chip solution is tested in the context of a highly portable sensing configuration consisting of a fiber-based optical path and LED-based light source using a nonfunctionalized SPR probe. The results are applicable to both functionalized (analyte-specific) and nonfunctionalized (bulk refractive index) sensing systems. The output of the chip is an optimized single voltage that represents the refractive index of the sensing environment. The single-chip solution is a novel combination of a photodiode, a photodiode biasing scheme, current-mode dark current/fixed pattern noise compensation, programmable current-mode background (reference) compensation, and an integration stage for weighting signals from multiple wavelengths to compute a single voltage output. Experimental results, including the effects of electronic noise, batch mismatch, and quantization error demonstrate a 6.8 resolution in refractive index units. This result is markedly improved over previous fully integrated solutions (3 resolution), and is comparable to traditional-software solutions (5 resolution) to SPR-based sensing problems.  相似文献   

15.
Dwivedi YS  Sharma AK  Gupta BD 《Applied optics》2007,46(21):4563-4569
We have theoretically analyzed the influence of skew rays on the performance of a fiber-optic sensor based on surface plasmon resonance. The performance of the sensor has been evaluated in terms of its sensitivity and signal-to-noise ratio (SNR). The theoretical model for skewness dependence includes the material dispersion in fiber cores and metal layers, simultaneous excitation of skew rays, and meridional rays in the fiber core along with all guided rays launching from a collimated light source. The effect of skew rays on the SNR and the sensitivity of the sensor with two different metals has been compared. The same comparison is carried out for the different values of design parameters such as numerical aperture, fiber core diameter, and the length of the surface-plasmon-resonance (SPR) active sensing region. This detailed analysis for the effect of skewness on the SNR and the sensitivity of the sensor leads us to achieve the best possible performance from a fiber-optic SPR sensor against the skewness in the optical fiber.  相似文献   

16.
Fan YE  Zhu T  Shi L  Rao YJ 《Applied optics》2011,50(23):4604-4610
We present a refractive index (RI) sensor based on a fiber Mach-Zehnder interferometer (MZI) formed by two cascaded special long-period fiber gratings (LPFGs) with rotary refractive index modulation (RLPFGs), in which the coupling occurred between the guided mode and the high-order asymmetric cladding mode. The experimental results show that the RI sensitivity of a refractometer with an interaction length of 40?mm is up to 58.8?nm/RI in the range of 1.3344 to 1.3637, which is 3.5 times higher than that of an MZI formed by two normal LPFGs. The temperature sensitivity for the same parameters of an RLPFG-MZI is about 0.03?nm/°C. Such a kind of high-sensitivity, easy-to-fabricate and simple-structure interferometer may find applications in the chemical or biochemical sensing fields.  相似文献   

17.
Ho HP  Wong CL  Chan KS  Wu SY  Lin C 《Applied optics》2006,45(23):5819-5826
What we believe to be a novel two-dimensional spectral surface plasmon resonance imaging technique determining pressure distribution in elastohydrodynamic lubricant films is presented. This technique makes use of the spectral characteristics associated with the surface plasmon resonance (SPR) effect, and it provides more spectral information in refractive index mapping than conventional contrast SPR imaging. Two-dimensional imaging is demonstrated and applied to a highly pressurized liquid lubricant trapped inside an elastohydrodynamic lubrication (EHL) dimple. The hydrostatic pressure inside the EHL dimple causes a localized change of the refractive index of the lubrication oil. This also results in a shift in the spectral SPR absorption dip. By monitoring the color changes within the SPR image and calibrating with lubricants of known refractive index profiles, we can obtain a direct measurement of the refractive index distribution within the EHL dimple. PB 2400 lubricant dimples were studied in our experiments. The proposed SPR imaging approach is irrespective of the absolute lubricant film thickness h, therefore overcoming the major limitations of a conventional optical interference technique. With further development of the two-dimensional refractive index mapping technique, widespread applications in various fields are possible, including high-throughput sensors and the detection of bioaffinity interactions.  相似文献   

18.
郭璇  毕卫红  刘丰 《光电工程》2012,39(4):102-107
针对提高光纤光栅折射率传感器抗干扰能力以及增加反射率的需求,本文提出了一种基于Fabry-Perot腔的保偏微结构光纤(PM-MOF)布拉格光栅折射率传感器.根据传榆矩阵法和有限元方法,分析了微结构光纤光栅F-P腔中被测物折射率与F-P腔反射谱中两个偏振模谐振波长差的关系,在此基础上讨论了中心孔直径、F-P腔长度等参数对传输特性的影响.研究结果表明,随着空气孔中填充物折射率的增加,保偏微结构光纤光栅F-P腔的两个偏振态的谐振波长差将逐渐减小;F-P腔的干涉作用使反射率较单个光栅有很大提高,便于长距离传输和实时解调;两个偏振模对外界干扰具有相似的响应,因此该传感器具有更强的抗干扰能力.本文研究结果为保偏微结构光纤光栅在折射率传感器及其生物传感器方面的应用提供了理论依据.  相似文献   

19.
Refractometric sensor based on a phase-shifted long-period fiber grating   总被引:1,自引:0,他引:1  
A refractometric sensor based on a phase-shifted long-period fiber grating written by electric-arc discharges is presented. Transmission and reflective configurations for refractive index measurements are studied. It is observed that the reflective topology permits better performance compared with the transmission one, which is the approach normally utilized in the context of long-period fiber sensing. The resolution achieved in the measurement of refractive index enables the application of this sensing head structure in demanding situations, such as the measurement of the level of salinity of water.  相似文献   

20.
A distributed sensing system for apolar hydrocarbons is presented which is built from a polymer-clad silica fiber adapted to an optical time domain reflectometer (OTDR) set-up. OTDR measurements allow locating and detecting chemicals by measuring the time delay between short light pulses entering the fiber and discrete changes in the backscatter signals that are caused by local extraction of hydrocarbons into the fiber cladding. The light guiding properties of the fiber are affected by interaction of the extracted chemicals with the evanescent wave light field extending into the fiber cladding. Distributed sensing of pure liquid hydrocarbons (HC) and aqueous HC solutions with a commercially available mini-OTDR adapted to sensing fibers of up to 1km length could be demonstrated. A pulsed laser diode emitting at the 850 nm telecommunication wavelength was applied in the mini-OTDR to locate the HCs by analyzing the step drop (light loss) in the backscatter signal, which is induced by local refractive index (RI) increase in the silicone cladding due to the extracted HC. The prototype instrument can be applied for monitoring hydrocarbon leakage in large technical installations, such as tanks, chemical pipelines or chemical waste disposal containments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号