首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Material imperfections usually play a substantial role in the early stages of fatigue cracking. This article presents some observations concerning fatigue crack initiating flaws and early crack growth in 7050-T7451 aluminium alloy specimens and in full-scale fatigue test articles with a production surface finish. Equivalent initial flaw size (EIFS) approaches used to evaluate the fatigue implications of metallurgical, manufacturing and service-induced features were refined by using quantitative fractography to acquire detailed information on the early crack growth behaviour of individual cracks; the crack growth observations were employed in a simple crack growth model developed for use in analysing service crack growth. The use of observed crack growth behaviour reduces the variability which is inherent in EIFS approaches which rely on modelling the whole of fatigue life, and which can dominate EIFS methods. The observations of realistic initial flaws also highlighted some of the significant factors in the fatigue life-determining early fatigue growth phase, such as surface treatment processes. Although inclusions are often regarded as the single most common type of initiating flaw, processes which include etching can lead to etch pitting of grain boundaries with significant fatigue life implications.  相似文献   

2.
In this study, 7475-T7351 aluminum strips were subjected to two tensile pre-strain levels of 3% and 5%. Using compact tension C(T) specimens, fatigue crack growth tests were conducted under constant amplitude loading at stress ratios of 0.1 and 0.5 in air and at room temperature. Three fatigue crack growth rate (FCGR) models, namely, Collipriest, Priddle, and NASGRO were examined. To handle the effect of stress ratio on FCGR, Walker equivalent stress intensity factor model was used. Consequently, generalized Collipriest (GC), generalized Priddle (GP), and generalized NASGRO (GN) models were developed and fitted to the FCGR data. It was shown that both GC and GP models fit the FCGR data in a similar fashion. However, the GP model provided a better fit than the GC model. The GN model was found to be the most appropriate model for the data. Therefore, this model may be suggested for use in critical applications, such as aeronautical structural design.  相似文献   

3.
In the present study, fatigue and fracture characteristics of sensitized marine grade Al‐Mg (AA 5754) alloy are experimentally evaluated. Received alloy is sensitized at temperatures of 150°C (SENS50) and 175°C (SENS75) for 100 hours. Fracture parameters, KIc and JIc, are experimentally evaluated. Slow strain rate tensile tests at a crosshead speed of 0.004, 0.006, and 0.01 mm/min; fatigue crack growth tests at load ratios (R = Pmin/Pmax) of 0.1, 0.2, and 0.5; and low cycle fatigue tests at four strain amplitudes of (0.3‐0.6)% are performed for SENS50 and SENS75 alloys. Relatively lower magnitude of fracture toughness values are observed for SENS75 specimen. Severe degradation in tensile properties, fatigue crack growth characteristics, and low cycle fatigue lives are observed for SENS75 samples. Extended finite element method is adopted to simulate the elasto‐plastic crack growth during fracture toughness evaluation. Scanning electron microscopy (SEM) is used to understand the failure mechanism of sensitized alloys.  相似文献   

4.
The effect of particle size on rotary bending fatigue behaviour was studied for powder metallurgy 2024 aluminium alloy composites reinforced with 10 wt% silicon carbide particles (SiCp ). Average particle sizes of 5, 20 and 60 μm were evaluated. Particle size had a significant influence on fatigue strength, indicating an increased fatigue strength with decreasing particle size. The composite with 5 μm SiC particles showed higher fatigue strength than the unreinforced alloy. The incorporation of 20 μm SiC particles led to an increase in fatigue strength at a high stress level, but the improvement diminished with decreasing stress level, and a slightly decreased fatigue strength was observed at low stress level, as compared with the unreinforced alloy. The composite with 60 μm SiC particles exhibited a considerable decrease in fatigue strength. Fatigue cracks initiated at several different microstructural features, e.g. surface defects, inclusions and particle–matrix interfaces, and crack initiation was considerably affected by particle size. Fatigue strength was found to depend strongly on the resistance to crack initiation, because there was no discernible difference in small crack growth between the unreinforced alloy and the composites, particularly at a low maximum stress intensity factor.  相似文献   

5.
The effect of the Al2O3 dust environment on the crack propagation behaviour of 2524‐T3 Al alloy was investigated. The results show that the Al2O3 dust environment reduces the fatigue crack growth rate (FCGR) of alloy especially at low ΔK. Many Al2O3 particles are deposited and stuck in the crack during fatigue loading which promotes crack closure, while this effect is gradually weakened with the increase of ΔK. The deposited Al2O3 particles induce the disorderly arranged slip bands (SBs) ahead of the crack tip which deflects the crack path making it more tortuous in the Al2O3 dust.  相似文献   

6.
Axial fatigue tests have been performed at three different stress ratios, R, of ?1, 0 and 0.4 using smooth specimens of an aluminium alloy composite reinforced with SiC particulates of 20 μm particle size. The effect of stress ratio on fatigue strength was studied on the basis of crack initiation, small crack growth and fracture surface analysis. The stress ratio dependence of fatigue strength that has been commonly observed in other materials was obtained, in which fatigue strength decreased with increasing stress ratio when characterized in terms of stress amplitude. At R=?1, the fatigue strength of the SiCp/Al composite was the same as that of the unreinforced alloy, but at R= 0 and 0.4 decreased significantly, indicating a detrimental effect of tensile mean stress in the SiCp/Al composite. The modified Goodman relation gave a fairly good estimation of the fatigue strength at 107 cycles in the unreinforced alloy, but significantly unconservative estimation in the SiCp/Al composite. At R= 0 and 0.4, cracks initiated at the interfaces between SiC particles and the matrix or due to particle cracking and then grew predominantly along the interfaces, because debonding between SiC particles and the matrix occurred easily under tensile mean stress. Such behaviour was different from that at R=?1. Therefore, it was concluded that the decrease in fatigue strength at high stress ratios and the observed stress ratio dependence in the SiCp/Al composite were attributed to the different fracture mechanisms operated at high stress ratios.  相似文献   

7.
In this paper, a physics‐based multiscale approach is introduced to predict the fatigue life of crystalline metallic materials. An energy‐based and slip‐based damage criterion is developed to model two important stages of fatigue crack initiation: the nucleation and the coalescence of microcracks. At the microscale, a damage index is developed on the basis of plastic strain energy to represent the growing rate of a nucleated microcrack. A statistical volume element model with high computational efficiency is developed at the mesoscale to represent the microstructure of the material. Also, the formation of a major crack is captured by a coalescence criterion at mesoscale. At the macroscale, a finite element analysis of selected test articles including lug joint and cruciform is conducted with the statistical volume element model bridging two scale meshes. A comparison between experimental and simulation results shows that the multiscale damage criterion is capable of capturing crack initiation and predicting fatigue life.  相似文献   

8.
The tension–tension and compression–compression nominal stress versus fatigue life responses of Alulight closed cell aluminium alloy foams have been measured for the compositions Al–1Mg–0.6Si and Al–1Mg–10Si (wt %), and for relative densities in the range 0.1–0.4. The fatigue strength of each foam increases with the relative density and with the mean applied stress, and is greater for the transverse orientation than for the longitudinal orientation. Under both tension–tension and compression–compression loading the dominant cyclic deformation mode appears to be material ratchetting; consequently, the fatigue life is highly sensitive to the magnitude of the applied stress. A micromechanical model is given to predict the dependence of life upon stress level and relative density. Panels containing a central hole were found to be notch insensitive for both tension–tension and compression–compression fatigue loading: the net-section strength equals the unnotched strength.  相似文献   

9.
Superplasticity was investigated in powder-metallurgy (PM) processed 7475Al+0.7Zr alloy. Strain-rate-change (SRC) tests were carried out at various temperatures to examine the relationship between strain rate and flow stress. After the compensation by threshold stress, the superplastic flow was found to be well correlated with lattice diffusivity in aluminium, like that in the ingot-metallurgy (IM) processed 7475Al alloy having a coarser grain size. Large tensile elongations of up to 1000% could be obtained at a very high strain rate near 10−1 s−1 and at 515°C. Short fibre formation was observed after the superplastic deformation. This formation seemed to be related to liquid formation on the grain boundaries and similar evidences were found over a wide range of temperature, not necessarily near the incipient melting point.  相似文献   

10.
Abstract This paper presents the results of several DSTO research programmes which investigated the effectiveness of the fatigue life enhancement method used on RAAF F/A‐18 aircraft – glass bead peening. The research identified ways in which process improvement could enhance this effectiveness, and developed a procedure for mid‐life reworking of critical airframe parts to effectively restore the original fatigue life. The procedure included removing a very thin layer of material (and with it, any undesirable manufacturing features and accumulated fatigue cracking) from the surface. Further life recovery can be achieved, if required, by applying an optimized peening procedure. This process has been developed to allow restoration of fatigue life to critical airframe components which are thought to be accumulating fatigue crack damage faster than desired.  相似文献   

11.
The linear part of the fatigue crack growth diagram is found to be divided into Stages IIa and IIb by the point O whose coordinates K* and A are dependent on the physical and structural characteristics of the material. In Stage IIa Keff remains constant as the microcrack advances in increments corresponding to the dislocation cell structure size, λ, pausing for (dN−1) cycles to accumulate the elastic energy required for the crack opening. During Stage IIb Kop remains constant and the microcrack opens during each cycle and advances irrespective of the substructure but in accordance with an increasing value of Keff. The effects of temperature and vacuum on K* are considered; the A values correspond to those of λ and are independent of the above effects.  相似文献   

12.
Friction stir welding (FSW) is restricted to non-safety–critical aerospace components because there is no reliable method for detecting kissing bonds (KB), which may have a significant effect on fatigue life. The effects of KB defects on the tensile and fatigue properties of 7475-T7351 friction stir welds were quantitatively evaluated with respect to a reference weld without any flaws and a base material. Various KB defects were investigated with the aim of determining the defect size that does not have a significant influence on the fatigue life of joined 6.35-mm-thick plates. A critical value for the KB geometry appears to be a depth of 0.3 mm considering the influence on fatigue life for the investigated configurations. This paper also presents results from micromorphological analyses of the fatigue crack initiation from the KB and from the analysis of the weld cross-section microstructure.  相似文献   

13.
14.
15.
Simulated flight (FALSTAFF) fatigue tests have been carried out on precracked single edgenotch test-pieces of (Ti4Al4Mo2Sn0.5Si) IMI 550 titanium alloy. Predictions of simulated flight fatigue behaviour have been made from constant amplitude fatigue data, using a damage accumulation approach, with no allowance for load history. The predicted lives were conservative compared with the measured lives, and accurate within a factor of approximately two. Retardation of fatigue crack growth increased with increasing load amplitude. The microstructure produced by β-solution heat treatment at 1010°C, followed by ageing, was found to improve simulated flight fatigue lives by up to approximately 100% compared with standard solution treatment at 900°C, followed by ageing.  相似文献   

16.
Low-cycle fatigue (LCF) behaviour of the alloy Ti-27Al-15Nb, in (α 2+B2) heat-treated condition was studied in total axial strain control mode at different total strain amplitudes (Δɛ 1/2) from ±0·65 to ±1·0% and room temperature. While there was little hardening of the material at the lowest strain amplitude (Δɛ t/2: ±0·65%), pronounced hardening was observed at the higher strain amplitudes (Δɛ t/2⩾0·83%). The cyclic stress, at high strain amplitudes, continuously increased from the beginning till fracture of the specimens. The LCF resistance of the material was found to be low and this was due to its poor ductility at room temperature. Dual slope was observed in the Coffin-Manson plot, with less slope of the upper segment than that of the lower one, as observed in several alloys. The fracture behaviour pointed to brittleness and faceted features were observed.  相似文献   

17.
The fatigue crack growth characteristics of high-strength aluminium alloys are discussed in terms of behaviour during mechanical testing and fracture surface appearance. For a wide range of crack growth rates, the crack extends both by the formation of ductile striations and by the coalescence of micro-voids. Dimples are observed at stress intensities very much less than the plane strain fracture toughness, and this is explained in terms of the probability of inclusions lying close to the crack tip. The striation formation process is described as a combination of environmentally-enhanced cleavage processes and plastic blunting of the crack tip.  相似文献   

18.
Abstract

Due to high temperatures and mechanical loads, cracks are initiated in aero engine turbine blades which limit the cyclic life of these components. The materials used for components which underlie high thermal and mechanical load are single crystalline (SX) nickel based super alloys that in most cases contain a certain amount of rhenium. Dramatically increasing Re prices lead to the development of Re-free alloys.

In this work, low-cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) tests were carried out on the Re-free single crystal M-247LC SX. The test results are shown and a model based on crack propagation was used to predict LCF and TMF life. It was shown, that the modeling results fit properly for out-of-phase TMF and LCF life while for in-phase TMF differences between calculated life and experiments occur due to a different mechanism of fracture.  相似文献   

19.
In order to contribute towards alloy design and therefore an improvement in fracture toughness of engineering materials in general, the effect of temperature, strain rate and strain level on the superplastic deformation, cavity nucleation and growth, and fracture behaviour are studied in an important rate-sensitive structural engineering material, 7475 Al, in the light of current models and thinking. The efficacy of hydrostatic pressure in reducing cavitation during superplastic deformation is considered.  相似文献   

20.
A study of small fatigue crack growth behaviour of an ultra-fine grain size aluminum alloy IN 9052 has been carried out. Specimens were tested in tension–tension at R0.1 in laboratory air and in the vacuum chamber of a field emission gun scanning electron microscope. Loading and unloading experiments were carried out within the SEM to study the displacements of the crack faces, the shape change at the crack tip, the shear bands around the crack tip and the fatigue crack growth mechanism. The in-situ SEM observations revealed that shear bands formed in the crack tip region were directly associated with the growth mechanism of the crack. The shear bands localized the decohesion in the crack tip region and the cracking along the shear bands was observed to occur during the loading part of the load cycle. The overall behaviour of the crack tip region subjected to cyclic loading is summarized by a qualitative model for small crack growth in an ultra-fine grained material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号