首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
主要考察了电解液浸泡对Li Ni1/3Co1/3Mn1/3O2粉料的影响,通过扫描电镜(SEM)观察了不同条件下粉体的形貌,采用X射线衍射仪及拉曼光谱仪表征晶体的结构,并将样品组装成电池,比较了不同条件处理下样品的首次放电及倍率性能。结果表明,电解液浸泡对Li Ni1/3Co1/3Mn1/3O2的形貌和晶体结构影响较小,但对粉体的电阻率和电池的容量有较大影响,而且随着浸泡温度的升高,其粉体电阻率和放电比容量均下降。  相似文献   

2.
以球形三元前驱体Ni0.5Co0.2Mn0.3(OH)2以及LiOH.H2O为原料,用正交实验优化锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2合成工艺,考察烧结温度、保温时间以及锂与金属元素(Ni、Co、Mn总量)物质的量比等因素对材料电化学性能的影响。得到最佳条件:烧结温度为800℃,保温时间为12 h,锂与金属元素物质的量比为1.06。按最佳工艺合成的样品在0.2 C、1 C首次放电比容量分别为165.1 mA.h/g和151.6 mA.h/g,且表现出良好的循环稳定性。  相似文献   

3.
采用La掺杂和固态电解质Li1.3Al0.3Ti1.7(PO4)3包覆对LiNi0.9Co0.05Mn0.05O2进行改性,研究掺杂和包覆对LiNi0.9Co0.05Mn0.05O2结构与性能的影响。结果表明:适量的La掺杂可以降低LiNi0.9Co0.05Mn0.05O2材料的离子迁移阻抗,提高Li+扩散系数,稳定材料的结构,从而提高材料的放电比容量及循环性能,当La掺杂量为0.1 wt%时,首次放电比容量为180.1 mAh·g-1,经过100次循环后的容量保持率高达93.34%,远高于未掺杂样品的86.20%。Li1.3Al0.3Ti1....  相似文献   

4.
钟清华  袁中直  杜锐 《广东化工》2013,(15):41-42,48
通过溶胶-凝胶法在LiNi0.5Mn0.5O2表面包覆一层Al2O3,采用X射线衍射(XRD),扫描电镜(SEM),恒电流充放电和电化学阻抗谱(EIS)对材料的结构和形貌及电化学性能进行了研究。实验结果表明,经过包覆后,有效地抑制了电解液对正极材料的侵蚀,包覆量为1.0%(质量分数)放电容量略有提高,循环性能也得到明显改善。因此包覆是一种改善LiNi0.5Mn0.5O2材料的电化学性能的有效方法。  相似文献   

5.
层状结构材料LiNi1/3Co1/3Mn1/3O2具有高比容量、高循环性能、低成本和环保等优点,有望取代LiCoO2成为新一代锂离子电池正极材料。在介绍LiNi1/3Co1/3Mn1/3O2的结构特点和电化学反应特性的基础上,对其主要合成方法进行了详细评述,总结了该正极材料的阴阳离子掺杂、复合离子掺杂以及表面包覆改性等技术,指出国内外目前锂离子电池材料研究中存在的问题和未来的发展方向。  相似文献   

6.
综述了A1203包覆LiNi(1/3)Cows)Mn(1/3)O2锂离子电池正极材料的研究现状与进展,并评述了其制备方法和包覆改性:讨论了包覆改善该正极材料性能的机理:提出了这种正极材料的研发过程中的一些问题并对其未来的发展前景作了展望。  相似文献   

7.
分别以纳米氧化铝、氢氧化铝及异丙醇铝为原料,采用液相浸渍法对LiNi1/3Co1/3Mn1/3O2材料进行氧化铝包覆,考察不同包覆源在LiNi1/3Co1/3Mn1/3O2材料表面进行氧化铝包覆后对材料电化学性能的影响。SEM及XRD结果显示,产物为层状α-NaFeO2结构,氧化铝均匀包覆在LiNi1/3Co1/3Mn1/3O2材料表面。充放电性能测试结果表明,在3种铝源中,以异丙醇铝为包覆源的材料性能最佳:在3.0~4.6 V的电压下,0.1 C倍率下首次放电比容量为196.1 mA·h/g, 1 C下循环50周后容量保持率为95.6%。  相似文献   

8.
通过浸渍法在正极材料LiNi1/3Co1/3Mn1/3O2的表面包覆MgF2,通过XRD、SEM、交流阻抗(EIS)分析、充放电测试研究了不同量MgF2包覆对LiNi1/3Co1/3Mn1/3O2正极材料的结构与电化学性能的影响。结果表明,MgF2以非晶态形式包覆于LiNi1/3Co1/3Mn1/3O2材料颗粒的表面,当包覆量为3%(物质的量分数,下同)时,三元正极材料具有优良的电化学性能,在3.0~4.6 V充放电范围内0.1C充放电倍率下,首次放电比容量为196.3 mA·h/g,1C循环50次后容量保持率为95.7%,55 ℃高温下1C循环50次后容量保持率为93.3%。  相似文献   

9.
江乐锋  王晓清  李畅 《辽宁化工》2013,42(5):523-525,530
随着锂离子电池的发展应用,高比能量、使用寿命长、安全环保的锂电池,已经成为各种便携式电子产品的首选供电,并已逐步进入我们的生活领域。开发大容量和高电压性能的新型正极材料尤为重要。其中锂离子电池正极材料LiNi0.5Mn1.5O4嵌锂电位高达4.7 V,循环性能好,能量效率高,在手机、电动汽车、航空等领域具有很好的发展前景。综述了近年来LiNi0.5Mn1.5O4的一些制备方法以及电化学性能的研究进展。  相似文献   

10.
采用共沉淀法和高温固相烧结相结合,合成了锂离子电池层状LiNi1/3Co1/3Mn1/3O2正极材料。采用ICP-AES元素分析方法、XRD和SEM对LiNi1/3Co1/3Mn1/3O2正极材料的成分、结构和形貌进行了表征。SEM测试结果表明,LiNi1/3Co1/3Mn1/3O2的形貌近似为球形,且颗粒分布均匀。并对其进行了充放电性能测试,结果表明:LiNi1/3Co1/3Mn1/3O2在25℃、2.5~4.6 V、0.1 C倍率下,首次放电容量达189.32 mAh.g-1(锂为负极),C/LiNi1/3Co1/3Mn1/3O2在1 C、2.75~4.2 V下,初始放电比容量为145.5 mAh/g,循环100次后,容量保持率为98.41%。是一种有发展前景的锂离子电池正极材料。  相似文献   

11.
LiNi1/3Co1/3Mn1/3O2 cathode materials have been coated with Al2O3 nano-particles using sol-gel processing to improve its electrochemical properties. The X-ray diffraction (XRD) pattern of the as-prepared Al2O3 nano-particles was indexed to the cubic structure of the γ-Al2O3 phase and had an average size of ∼4 nm. The XRD showed that the structure of LiNi1/3Co1/3Mn1/3O2 was not affected by the Al2O3 coating. However, the Al2O3 coatings on LiNi1/3Co1/3Mn1/3O2 improved the cyclic life performance and rate capability without decreasing its initial discharge capacity. These electrochemical properties were also compared with those of LiAlO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material. The electrochemical impedance spectroscopy (EIS) was studied to understand the enhanced electrochemical properties of the Al2O3-coated LiNi1/3Co1/3Mn1/3O2 compared to uncoated LiNi1/3Co1/3Mn1/3O2.  相似文献   

12.
Layered Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 materials with x = 0, 0.01, 0.02, 0.03, 0.05 are prepared by a solid-state pyrolysis method. The oxide compounds were calcined with various Cr-doped contents, which result in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry, and SEM. XRD experiment revealed that the Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 (x = 0, 0.01, 0.02, 0.03, 0.05) were crystallized to well layered -NaFeO2 structure. The first specific discharge capacity and coulombic efficiency of the electrode of Cr-doped materials were higher than that of pristine material. When x = 0.02, the sample showed the highest first discharge capacity of 241.9 mAh g−1 at a current density of 30 mA g−1 in the voltage range 2.3–4.6 V, and the Cr-doped samples exhibited higher discharge capacity and better cycleability under medium and high current densities at room temperature.  相似文献   

13.
层状结构LiNi1/3Co1/3Mn1/3O2正极材料制备过程与电化学性能   总被引:1,自引:0,他引:1  
采用固相自引发基团置换法结合高温焙烧制备了亚μm级的LiNi1/3Co1/3Mn1/3O2正极材料。研究了热处理气氛、烧结时间对材料结构及性能的影响。研究结果表明在空气氛围下900℃焙烧20 h制备的LiNi1/3Co1/3Mn1/3O2正极材料具有最佳的电化学性能。  相似文献   

14.
讨论了焙烧温度对LiCo1/3Ni1/3Mn1/3O2的共沉淀法合成过程的影响,结合XRD、SEM、振实密度分析和充放电测试等手段获得了共沉淀法制备LiCo1/3Ni1/3Mn1/3O2的最佳合成温度。获得了共沉淀法制备LiCo1/3Ni1/3Mn1/3O2的最佳焙烧温度为900℃,在上述最佳焙烧温度条件下合成的正极材料具有优异的电化学性能。  相似文献   

15.
Nickel(Ni)-rich layered materials have attracted considerable interests as promising cathode materials for lithium ion batteries (LIBs) owing to their higher capacities and lower cost. Nevertheless, Mn-rich cathode materials usually suffer from poor cyclability caused by the unavoidable side-reactions between Ni4+ ions on the surface and electrolytes. The design of gradient concentration (GC) particles with Ni-rich inside and Mn-rich outside is proved to be an efficient way to address the issue. Herein, a series of LiNi0.6Co0.2Mn0.2O2 (LNCM622) materials with different GCs (the atomic ratio of Ni/Mn decreasing from the core to the outer layer) have been successfully synthesized via rationally designed co-precipitation process. Experimental results demonstrate that the GC of LNCM622 materials plays an important role in their microstructure and electrochemical properties. The as-prepared GC3.5 cathode material with optimal GC can provide a shorter pathway for lithium-ion diffusion and stabilize the near-surface region, and finally achieve excellent electrochemical performances, delivering a discharge capacity over 176 mAh·g−1 at 0.2 C rate and exhibiting capacity retention up to 94% after 100 cycles at 1 C. The rationally-designed co-precipitation process for fabricating the Ni-rich layered cathode materials with gradient composition lays a solid foundation for the preparation of high-performance cathode materials for LIBs.  相似文献   

16.
采用固相法和沉淀法合成了锂离子电池正极材料LiCo1/3Ni1/3Mn1/3O2探讨了合成温度、不同合成方法对材料的电化学性能的影响。利用充放电测试、循环伏安测试方法对合成的LiCo1/3Ni1/3Mn1/3O2进行了表征。结果表明,固相法900℃煅烧合成的材料电化学性能较好,沉淀法合成的材料电化学性能最好,以10.0mA/g的电流充放电,首次放电比容量为576.0C/g,循环50次后放电比容量仍保持501.5C/g。以100.0mA/g的大电流放电,放电比容量达到430.2C/g。  相似文献   

17.
经过几十年的发展,锂离子电池由于其在能量密度、循环寿命等方面的优势,在小心电子产品上获得了广泛的应用。在目前的商业化锂离子电池产业中,应用最广泛的正极材料是由Good enough等开发的LiCoO2材料,但是其有毒、热稳定性差等特点,导致其难以得到进一步的应用。因此,通过开发他们的复合材料成为了锂离子电池正极材料开发的主要研究方向之一。论文主要对LiNi1/3Co1/3Mn1/3O2材料的热聚合法制备及性能表征进行了一定的研究。  相似文献   

18.
A series of LiNi1/3Mn1/3Co1/3O2 samples with α-NaFeO2 structure belonging to the D3d5 space group were synthesized using tartaric acid as a chelating agent by wet-chemical method. Different acid to metal-ion ratios R have been used to investigate the effect of this parameter on the physical and electrochemical properties. We have characterized the reaction mechanism, the structure, and morphology of the powders by TGA, XRD, SEM and TEM imaging, completed by magnetic measurements, Raman scattering spectroscopy, and complex impedance experiments. We find that the LiNi1/3Mn1/3Co1/3O2 sintered at 900 °C for 15 h with an acid to metal-ion ratio R = 2 was the optimum condition for this synthesis. For this optimized sample, only 1.3% of nickel-ions occupied the 3b Wyckoff site of the lithium-ions sublattice. The electrochemical performance has been investigated using a coin-type cell containing Li metal as the anode. The electronic performance is correlated to the concentration of the Ni(3b) defects that increase the charge transfer resistance and reduce the lithium diffusion coefficient. The optimized cell delivered an initial discharge capacity of 172 mAh g−1 in the cut-off voltage of 2.8-4.4 V, with a coulombic efficiency of 93.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号