首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用激光熔覆技术在TC21钛合金表面熔覆了含有SiC颗粒的复合涂层,研究了SiC颗粒尺寸对熔覆层物相组成、微观组织、硬度及摩擦磨损性能的影响。结果表明,熔覆层中的主要物相为Ti2Ni、TiNi、Ti5Si3和TiC;TiC颗粒起到细化晶粒的作用;添加微米SiC颗粒后的熔覆层表面硬度和耐磨性分别为基体的2.1倍和2.082倍,而添加纳米SiC颗粒后的熔覆层表面硬度和耐磨性分别为基体的2.4倍和1.475倍。  相似文献   

2.
采用激光熔覆技术在Q235钢基体上制备了不同La2O3含量的镍基纳米Al2O3复合涂层。通过扫描电镜观察分析了熔覆层的微观组织结构,并对熔覆层的显微硬度和摩擦磨损性能进行了测试。试验结果表明,加入1.5wt%稀土La2O3时,熔覆层组织显著细化,由细小的等轴树枝晶和共晶组织组成,熔覆涂层的显微硬度在651.4HV0.2至732.4HV0.2之间,耐磨性能显著提高。  相似文献   

3.
利用激光熔覆技术在镍基合金表面制备了SiC增韧增强的硅化钼复合涂层,研究SiC含量对涂层的裂纹与气孔的形成、组织结构特征、物相组成及硬度、高温摩擦磨损和高温抗氧化性能的影响。结果表明,随着混合粉末中SiC含量的增加,涂层的显微硬度值逐渐增大,高温摩擦磨损性能和高温氧化性能增强,但过高的SiC加入量会使熔覆层的气孔和裂纹倾向明显增大。在SiC含量最高为15%时,涂层无明显成形缺陷,熔覆层组织主要由γ-Ni、Mo2Ni3Si、MoSi2及SiC等相组成,显微硬度值可达814 HV,是基体的5.4倍。  相似文献   

4.
为了能够明确激光熔覆技术对体育器材硬度的改善效果,提出分别从复合涂层、层间停光时间以及激光扫描速度方面变量参数进行硬度影响分析,研究三氧化二铝含量对复合熔覆层形貌、显微硬度和耐磨性能的影响,多层熔覆对激光熔覆层微观组织和硬度的影响,激光扫描速度对熔覆层宏观形貌、相组成、显微组织、成分及硬度分布等影响。进行了理论分析和实验验证,结果表明,随熔覆层表面距离增加,激光熔覆层显微硬度会减小,器材硬度会呈现出先增加后减小趋势;第二层熔覆距离降低使第一层中硬度随距离减少而提高;通过增大扫描速度,熔覆层的组织有细化趋势,组织不均匀性得到改善,同时熔覆层厚度降低,稀释率减小,使熔覆层平均硅含量提高,显微硬度改善。  相似文献   

5.
为了改进TC4 钛合金的耐磨性能,开发具有热应力缓和功能的梯度涂层,在对梯度涂层优化设计的基础上,采用激光熔覆的方法在TC4 钛合金的表面上制备耐磨钛基功能梯度(Ti-FGM)复合涂层,观察了微观组织,测量了Ti-FGM 涂层和基材在大气环境室温下的摩擦磨损性能和显微硬度。结果表明:原位自生的增强相TiC 颗粒均匀分布在梯度功能耐磨熔覆层中,微观组织沿熔覆方向呈现粗大树枝晶到颗粒状晶体的变化。复合涂层硬度呈现梯度上升趋势且涂层顶部表现出较优异的耐磨性能。  相似文献   

6.
基体材料对NiCrBSi激光熔覆层组织及硬度的影响   总被引:2,自引:1,他引:1  
在TC4合金和60^#钢表面进行了激光熔覆NiCrBSi涂层的试验,利用扫描电镜和X射线衍射仪等对激光熔覆层的组织、成分和物查进行了分析,测试了激光熔覆层的显微硬度。结果表明,激光熔覆层在微观结构上存在熔覆区、结合区、基体热影响区三个区域。在TC4合金表面熔覆区中出现了TiB2、TiC等新相,其显微硬度在HV900-1100之间,明显于60^#钢表面熔覆区的显微硬度(HV800-900)。  相似文献   

7.
何良华  周芳  杨蕙瑶 《激光技术》2013,37(3):306-309
为了提高零件表面强度和耐磨性,以TiO2,Al,B4C和KF-Co50合金粉末为原料,利用激光熔覆技术,采用预置粉末法,在Q235钢基体表面原位合成了TiC-TiB2增强Co基复合涂层。使用金相显微镜、扫描电镜和X射线衍射仪对熔覆层的组织和物相进行了分析,并对熔覆层的显微硬度及耐磨性能进行了测试。结果表明,熔覆层与基材呈现良好的冶金结合,组织致密,无裂纹、气孔等缺陷;熔覆层的主要组成相有γ-Co,TiC,TiB2,Cr23C6等;熔覆层平均显微硬度达770HV0.2,耐磨性能优异。这一结果对提高零件使用寿命具有积极意义。  相似文献   

8.
纳米材料由于其结构的特殊性,具有一般材料难以获得的优异性能,为了将纳米材料的优异性能应用到镁合金表面改性当中,利用横流CO2激光器在AZ31B镁合金基体上制备了Al-Si合金粉末+5%纳米SiC粉末复合涂层,采用光学显微镜、扫描电子显微镜观察了熔覆层的显微组织并分析了微区成分分布情况,激光熔覆层与基体结合良好,熔覆层的显微组织具有明显的结构特征,出现了大量的十字架结构。X射线衍射结果表明,激光熔覆层的组成相主要为Mg2Si、Mg2C3、Mg17Al12、Al3.21Si0.47等。利用显微硬度仪进行了硬度测试,由于在激光熔覆过程中新形成的化合物起到了强化作用,熔覆层的最高显微硬度可达216 HV0.2,是基体的3倍多。  相似文献   

9.
TC4钛合金表面激光熔覆C与BN粉末原位生成复合涂层   总被引:1,自引:0,他引:1  
将高纯度的C,BN机械混合粉末预涂在TC4钛合金表面,采用5 kW横流CO2激光器进行激光熔覆,原位生成高硬度复合涂层。利用光学显微镜(OM)、扫描电镜(SEM)和能量弥散X射线探测器(EDXs)等观察和分析熔覆层的微观组织和成分,测试了熔覆层的硬度。结果表明,以C,BN机械混合粉末为原料,利用激光熔覆原位生成技术生成了树枝晶状的复合熔覆层,熔覆层与基体冶金结合。熔覆层显微硬度值最高可达1454 HV0.5,显著地提高了TC4合金的硬度。  相似文献   

10.
为了提高材料表面强度和硬度,在材料的表面采用激光熔覆技术熔覆合金涂层以提高其表面性能。相同的激光功率下采用不同的激光扫描速率在材料表面激光熔覆制备镍基(Ni60)复合涂层,取得了在基材表面获得理想熔覆层的工艺参量,并对熔覆层的性能进行了检测。结果表明,随着激光扫描速率的增加,表面粗糙度变大,熔覆层的宽度、高度、基材的熔化深度都有一定程度的降低,裂纹出现增大趋势,熔覆层显微硬度高出基材显微硬度约500HV,激光熔覆技术在一定范围内可以实现对基材的表面硬化。该结果为材料表面强化的研究提供了参考。  相似文献   

11.
钛合金表面激光熔覆涂层的耐磨性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高钛合金的表面耐磨性能,采用MXP-2000型销盘式摩擦磨损实验机,以镍包石墨粉末为原材料,利用CO2激光器在TC4合金表面上熔覆耐磨涂层,进行钛合金及激光熔覆涂层的干摩擦磨损实验,并用扫描电镜对磨损表面进行观察和分析。实验结果表明,激光熔覆涂层的摩擦系数为0.56,与钛合金的摩擦系数基本相同,但激光熔覆涂层的磨损失重量比钛合金低接近一个数量级,说明激光熔覆涂层可以大大提高钛合金的表面耐磨性能。TC4合金的磨损机制以粘着磨损为主,激光熔覆涂层的磨损机制以磨粒磨损为主,涂层的高硬度加上涂层里的TiC增强相是其耐磨性高的主要原因。  相似文献   

12.
采用同轴送粉法,通过YLS-4000多模光纤激光器以不同功率在高锰钢表面激光熔覆Ni/WC陶瓷复合涂层,通过光学显微镜、显微硬度计,对涂层的组织形貌、显微硬度进行了分析研究,做了室温干摩擦磨损试验并分析研究了涂层的耐磨性能。结果表明,Ni/WC层组织沿深度方向依次出现细小的胞状晶、树枝晶、柱状树枝晶和薄的平面晶,在1600 W、1900 W、2200 W的激光功率下对应的Ni/WC层的平均显微硬度分别为980.7 HV0.1、901.0 HV0.1、809.4 HV0.1,分别为基材平均显微硬度的2.8、2.5、2.3倍。在相同摩擦磨损试验条件下,基体的磨损量是激光功率为1600 W条件下的熔覆层的10.4倍,在激光功率为1600 W时,通过激光熔覆获得了组织致密均匀、硬度高和具有良好耐磨性的涂层。  相似文献   

13.
为解决铸铁表面熔覆铁基合金熔覆层耐腐蚀性能不足,限制其应用场合的问题。采用大功率半导体光纤耦合激光器在灰铸铁平板上制备四种镍含量不同的铁基合金粉末熔覆层,利用光学显微镜、数显维氏硬度计,WTM 2E微型摩擦磨损试验仪及盐雾腐蚀箱等仪器对熔覆层金相显微组织、硬度、耐磨损和耐腐蚀性能进行检测。结果表明,四种铁基合金粉末熔覆层晶粒尺寸依次增大,晶粒数目减小,熔覆层硬度及耐磨性能降低,耐腐蚀性能提高。C铁基合金粉末熔覆层平均硬度550 HV0.3,相对于基材提高了3倍以上,耐磨性相对于基材提高了4倍,48 h腐蚀试验,较铁基合金熔覆层耐腐蚀性能显著增强,综合性能满足更多实际需求。本研究降低了铸铁件的修复成本,拓展了铁基合金修复铸铁件的应用范围,对工程实践具有重要指导意义。  相似文献   

14.
TiN_p/镍基合金复合耐磨涂层的激光熔覆   总被引:13,自引:0,他引:13  
在45钢表面用激光束熔覆了TiN_p/镍基合金复合耐磨涂层,对涂层的组织和滑动磨损性能进行了分析,并讨论了不同激光工艺参数下涂层稀释度的变化情况。熔覆层由TiN颗粒、γ-Ni初晶以及γ-Ni+(Fe,Cr)_23(CB)_6共晶构成。初晶γ-Ni中观察到高密度的位错,共晶化合物(Fe,Cr)_23(CB)_6中出现了大量的层错亚结构,这些特征均使得涂层中的基体相得到了强化。在激光熔覆过程中硬质相TiN颗粒边缘发生了部分溶解,冷却过程中重新凝固的TiN以细小枝晶状独立形核析出。复合涂层中由于TiN颗粒的存在使得涂层硬度显著提高,在摩擦系数不明显变大的前提下耐磨性提高了3倍。  相似文献   

15.
激光熔覆Ni/WC复合涂层的组织和性能   总被引:8,自引:2,他引:8  
采用激光熔覆方法在A3钢基体上制备Ni/WC复合涂层 ,研究了不同激光功率下复合涂层中WC颗粒的形貌与分布及其对涂层耐磨性能的影响。结果表明 ,在Ni/WC复合涂层中 ,合理的激光功率使WC颗粒部分熔化 ,并在颗粒周围重新凝固并析出针状碳化物 ,这既有利于提高涂层的硬度又能使未熔化的WC颗粒与涂层基体合金牢固结合。  相似文献   

16.
激光熔覆SiC/不锈钢粉末复合涂层的组织与性能   总被引:16,自引:0,他引:16  
杨永强  文效忠 《中国激光》2000,27(10):941-946
用 2 k W Nd:YAG激光在 4 0 Cr钢基体上制取了 Si C强化的 Fe基复合材料涂层 ,并对熔覆层进行了显微组织结构和性能测试 .加入的 Si C包括颗粒状和纤维状两种形态 ,通过调整颗粒状Si Cp和纤维状 Si Cf的加入量 ,研究了 Si C在激光熔覆过程中的演变、存在形式及对熔覆层硬度的影响 .结果表明 ,随着加入量的增加 ,熔覆层中未熔 Si C含量增加 ,熔覆层硬度也随之提高 ;对比加入颗粒状和纤维状 Si C的熔覆层的显微硬度表明 ,同含量情况下纤维状 Si C的强化效果更显著 ;造成熔覆层硬度显著提高的原因是未熔 Si C,析出相 Fe Si C的弥散强化和熔入的 Si,C元素引起的固溶强化作用 .  相似文献   

17.
钛合金激光熔覆硬质颗粒增强金属间化合物复合涂层耐磨性   总被引:15,自引:2,他引:13  
冯淑容  张述泉  王华明 《中国激光》2012,39(2):203002-71
以54.51Ti-37.68Ni-7.81B4C(元素前数字为质量分数值)粉末混合物为原料,利用激光熔覆技术在TA15钛合金基材表面制得了以外加未熔B4C颗粒及快速凝固"原位"生成硼化钛和碳化钛为增强相,以金属间化合物TiNi、Ti2Ni为基体的复合涂层。采用光学显微镜(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等手段分析了涂层显微组织,并测试了涂层的二体磨粒磨损性能。结果表明,激光熔覆硬质颗粒增强金属间化合物复合涂层硬度高、组织均匀并表现出优异的抗磨粒磨损性能。高硬度、高耐磨的B4C、硼化钛和碳化钛陶瓷增强相与高韧性TiNi/Ti2Ni金属间化合物基体的强韧结合是激光熔覆涂层优异耐磨性的主要原因,其磨损机理为轻微的显微切削和塑性变形。  相似文献   

18.
刘秀波  王华明 《中国激光》2005,32(8):143-1149
利用预涂NiCrSi复合粉末时TiAl合金进行激光熔覆处理,分析了原始TiAl合金和激光熔覆复合材料涂层的耐磨性能和高温抗氧化性能,讨论了磨损和高温抗氧化机理及其与预涂合金粉末成分的关系。结果表明,涂层的滑动磨损和耐磨性能有提高,但当耐磨相体积分数过高时,由于涂层脆性增大,其耐磨性呈下降趋势;涂层在1000℃恒温氧化条件下均具有较好的抗氧化性能,氧化层结构较连续致密,主要由α-Al2O3,TiO2和SiO2组成。预涂NiCr-40%Si混合合金粉末的激光熔覆复合材料涂层具有更好的耐磨性和高温抗氧化性能。  相似文献   

19.
激光熔覆镍包纳米氧化铝   总被引:10,自引:7,他引:10  
姚建华  张伟 《中国激光》2006,33(5):05-708
进行了2Cr13不锈钢表面激光熔覆镍包纳米氧化铝的实验。使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线能量色散谱仪(EDAX)、显微硬度仪等设备检测了涂层表面、横截面的显微组织和涂层的硬度、耐磨损等性能,分析了加入纳米氧化铝粒子后对涂层组织和性能的影响。研究结果表明,激光熔覆可获得致密的Fe-Ni(Cr)合金和Al2O3粒子复合涂层。其中,纳米氧化铝粒子弥散分布在微细合金晶粒之间,并与合金晶粒一起形成了胞状树枝晶结构。纳米氧化铝粒子的加入增加了基质金属的成核率,起到了细晶强化以及弥散强化的作用,使得复合涂层的机械性能大幅度提高。复合涂层的平均硬度为700HV0.2,比基体提高了1.5倍,耐磨损性能比淬火态基体提高了1.25倍。  相似文献   

20.
为了进一步提高模具钢表面的硬度和耐磨性能,以Cr12MoV作为基体材料,利用2 kW半导体激光器,以同轴送粉的方式在其表面上熔覆高硬度的Fe基合金粉末。通过光学显微镜、X射线衍射、扫描电镜分析熔覆层的组织形貌和物相;用显微硬度计测试熔覆层的显微硬度,用磨损试验机进行耐磨试验。进而研究激光功率、扫描速度和送粉量等工艺参数对熔覆层组织性能的影响,确定了最优化工艺参数。实验结果表明,使熔覆层的硬度和耐磨性较优良的工艺参数为:激光功率为1.2 kW,扫描速度为720 mm/s,送粉量为8.5 g/min。在此工艺参数下,熔覆层无裂纹、气孔、夹渣等缺陷,且显微硬度和耐磨性能得到显著提高,最高硬度达921 HV0.2,熔覆层的磨损失重仅为基体材料的25%,明显高于基体的硬度和耐磨性,这归因于熔覆层中存在V4C3、Cr23C6、Cr7C3等细小树枝晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号