共查询到16条相似文献,搜索用时 62 毫秒
1.
从局部极小到全局最优 总被引:2,自引:0,他引:2
所有控制决策问题本质上均可归结为优化问题,但大部分存在多极小,因此如何摆脱局部极小以实现全局最优一直是理论界和工程界关注的热点课题。文章总结了若干全局优化技术的机制和特点,包括模拟退火、进化计算、禁忌搜索、变邻域搜索、噪声方法、巢分区、混沌搜索、隧道方法、平滑技术、混合算法等,力求为优化研究人员了解全局优化技术和开发高效算法提供指导。 相似文献
2.
3.
4.
5.
新型全局优化蝙蝠算法 总被引:3,自引:1,他引:3
通过对生物智能机理的借鉴,许多解决复杂问题的新方法不断涌现.最近,Yang基于蝙蝠的回声定位行为,提出了一种新的全局优化算法——蝙蝠算法,同时将一些现有算法的优点引入到该算法中.首先讨论了蝙蝠算法的生物学动机,从原理上描述了蝙蝠回声定位行为和算法实现流程,随后求解了函数极值优化问题.仿真结果表明,蝙蝠算法的性能优于粒子群算法.最后,对进一步研究作了展望. 相似文献
6.
提出了一种具有混沌局部搜索策略的差分进化全局优化算法(CLSDE),它是在每一代中通过DE/best/1/bin形式的差分进化算法找到最佳个体,然后在最佳个体的附近用混沌的方法进行局部搜索。8个基本的测试函数优化结果表明:若误差函数精度为10-10,CLSDE寻优成功率比DE和SACDE都要高,而且收敛速度比DE和SACDE都要快。 相似文献
7.
为提高正交遗传算法收敛速度和搜索精度,在正交遗传算法的基础上引入局部搜索策略,提出一种新的聚类局部搜索算子。利用正交算子初始化种群,保证初始群体分布的均匀性和多样性。通过正交算子在全局范围内进行全局搜索,使算法能在全局范围内收敛。采用聚类局部搜索算子对群体进行局部搜索,以增强算法的收敛速度和搜索精度。对7个高维的Benchmark函数进行测试,仿真实验结果表明,与其他算法相比,该算法具有更好的搜索精度、收敛速度和全局寻优的能力。 相似文献
8.
9.
为了解决布谷鸟搜索算法后期收敛速度慢、求解精度不高、易陷入局部最优等缺陷,提出了一种基于Powell局部搜索策略的全局优化布谷鸟搜索算法.算法将布谷鸟全局搜索能力与Powell方法的局部寻优性能有机地结合,并根据适应度值逐步构建精英种群候选解池在迭代后期牵引Powell搜索的局部优化,在保证求解速度、尽可能找到全局极值点的同时提高算法的求解精度.对52个典型测试函数实验结果表明,该算法相比于传统的布谷鸟搜索算法不仅寻优精度和寻优率有所提高,并且适应能力强、鲁棒性好,与最新提出的其他改进算法相比也具有一定的竞争优势. 相似文献
10.
一种新型的全局优化算法——细胞膜优化算法* 总被引:2,自引:0,他引:2
通过研究细胞膜的特性及其物质转运方式,从中进行提取优化模型,并结合全局优化算法的基本思想,提出了一种新型的全局优化算法——细胞膜优化算法(CMO)。通过数值实验,验证了细胞膜优化算法具有很好的全局寻优能力、快速的收敛能力和获取高精度解的能力,并与标准粒子群算法(PSO)和人口迁移算法(PMA)进行比较,结果表明,细胞膜优化算法在解决高维优化问题时具有更好的收敛性能。 相似文献
11.
针对求解全局优化问题,有很多种求解方法。文中提出了一种快速求解一般无约束最优化问题的辅助函数方法。即F-C函数方法。该方法与填充函数法和跨越函数法相比较,既有相同点又有不同点。F-C函数法最大的优点就是在极小化F-C函数阶段中只需要进行一次局部极小化算法就能得到比当前极小值更低的目标函数局部极小点。文中在无Lipschitz连续的条件下,给出了一类新的求解全局优化问题的F-C函数。文中讨论了该F-C函数的优良性质并对该函数设计了相应的算法。最后,通过数值试验表明该F-C函数方法具有有效性和可行性。 相似文献
12.
求解全局优化问题的混合自适应正交遗传算法 总被引:3,自引:0,他引:3
提出了一种基于正交实验设计的混合自适应正交遗传算法(hybrid self-adaptive orthogonal genetic algorithm,简称HSOGA)以求解全局优化问题,此算法利用正交实验设计方法设计交叉算子,并提出一种自适应正交交叉算子.该自适应正交交叉算子根据父代个体的相似度自适应地调整正交表的因素个数和对父代个体进行因素分割的位置,生成具有代表性的子代个体,以更好地搜索空间.此外,新算法利用自适应正交交叉算子生成均匀分布的初始种群,以保证初始群体的多样性.同时引入了局部搜索策略以提高算法局部搜索能力和收敛速度.通过14个高维的Benchmark函数验证了算法的通用性和有效性. 相似文献
13.
求解全局优化问题的混合智能算法 总被引:3,自引:0,他引:3
把序列二次规划作为遗传算法的一个局部搜索算子,嵌入到实数编码遗传算法中,构成一种基于序列二次规划和实数编码遗传算法的高效的混合智能算法。该方法充分利用序列二次规划法的强局部搜索能力和遗传算法的全局收敛性,使得混合算法的全局收敛性得到改善并且减少了计算量。数值实验结果表明,混合算法是高效可靠的。 相似文献
14.
基于黄金分割的全局最优化方法 总被引:10,自引:0,他引:10
提出了求无约束问题全局最优解的一种直接解法。该方法将经典的0.618由一维推广到了二维,将原算法的适用范围由单峰函数推广到了多峰函数,从而可以求全局最优解,该算法具有结构简单、精度高、对计算机硬件要求低等优点。此外,给出了收敛性证明。仿真结果表明算法是有效的。 相似文献
15.
基于区间优化的神经网络全局优化方法 总被引:1,自引:0,他引:1
刘宝库 《计算机工程与应用》2005,41(23):90-92
Hopfield神经网络被广泛应用于优化问题的求解中,而传统的Hopfield网络通常基于梯度下降法,此方法容易陷入局部极小而得到次最优解或收敛到问题的不可行解。另外,当用于训练网络样本的输入/输出数据无法精确给出,而只能以一定的范围的形式给出时,传统的神经网络学习方法就无能为力了。论文提出了一种基于区间优化的神经网络学习算法,可以很好地解决上面所提到的传统神经网络学习算法的缺点。 相似文献
16.
布局问题是NP完全问题,传统的优化算法很难求得全局最优欠解,遗传算法和模拟退火算法等的随机搜索算法的求解精度和效率不能令人满意,文中将启发式随机搜索策略的局部优化算法相结合,构造混合全局寻优算法,以旋转卫星舱布局问题的简化模型为背景,建立了多目标优化的数学模型,通过一已在最优解的布局算例与遗传算法和乘子法的计算结果比较,该算法求解的质量和效率更优,表明此算法在布局优化中具有应用潜力。 相似文献