首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为解决稠油黏度高、流动性差的问题,将一株降黏菌D-8与一株表面活性剂产生菌B-12进行复配得到复配菌DB8-12,并研究DB8-12的生长特性及其对原油降黏效果的影响。研究结果表明:D-8和B-12按3∶2比例复配,按3%接种量接种,在pH值为7.5,温度为35℃下培养3d后具有最大菌体光密度值;复配菌液按体积比为30%与原油进行混合,在45℃恒温水浴中及摇床转速为140r/min下振荡培养3d后即可达到最佳降黏效果,原油黏度由2120mPa·s降至810mPa·s,降黏率达61.8%;经复配菌作用后,原油大粒径所占比率显著降低,小粒径所占比率明显升高,宏观表现为原油黏度降低,流动性明显提高。DB8-12在原油中生长繁殖快、用量少、耗时短,可改善稠油的流动性能,能有效降低稠油开采及输送成本,具有较高的实用价值。该项研究对微生物降黏开采及输送技术的拓展研究具有重要意义。  相似文献   

2.
稠油微生物降解是微生物采油的重要机理之一,但其效率较低,不能明显改变稠油化学组成,降低稠油黏度,从而影响采油效率。针对这一问题,将产表面活性菌与稠油降解菌复配,通过测定菌种作用前后原油的黏度确定产表面活性菌与稠油降解菌的最佳复配比例;通过原油四组分分析和变性梯度凝胶电泳,研究了生物表面活性剂对稠油生物降解的强化作用。结果表明,产表面活性菌T-1、X-3与稠油降解菌QB26、QB36适宜的复配体积比为2∶2∶1∶1。菌种复配作用后,稠油黏度明显降低,与单独使用降解菌相比降黏率平均提高33.1%,胶质与沥青质平均降解率提高8.0%和4.9%。产表面活性剂菌的加入增加了表面活性剂含量,降低了胶质沥青质等相对重质组分的含量;产表面活性剂菌通过产生表面活性剂,使原油降黏增溶,形成小液滴,易于被稠油降解菌捕获降解,不仅降低稠油黏度,还提高了稠油降解菌的数量。生物表面活性剂对稠油生物降解具有明显的强化作用,在微生物采油技术中具有良好的应用潜力。图1表1参19  相似文献   

3.
通过实验研制出适合辽河稠油的LY-5型乳化降黏剂,分析降黏机理并对温度、加剂浓度、时间和含水率等影响因素进行了评价,对配伍性及腐蚀性进行了测试。结果表明:LY-5降黏剂中极性高渗助剂解离胶质沥青质网状构架,稠油形成小颗粒,降黏剂的表面活性成分在小颗粒表面形成一层膜,阻止胶质沥青质再次积聚形成网状结构,达到稳定降低稠油黏度的目的。辽河稠油中胶质沥青质质量分数大于45%,地层水矿化度不大,LY-5型降黏剂最佳加剂质量浓度1 000 mg/L,加剂后原油在50℃下黏度在100 m Pa·s以下,降黏率达到99.8%且稳定,达到油井举升条件,乳状液随温度升高黏度增大,水的质量分数在20%~70%具有最佳降黏效果。降黏剂具有一定的缓蚀性,加量为5%时,缓蚀率可达100%,且对联合站水处理无影响。  相似文献   

4.
针对塔河油田稠油物性特征进行的试验表明,稠油区块在集输温度小于100℃的情况下,大部分油井原油流动性差,基本不具流动性。分别进行了超稠油掺轻油降黏试验、掺稀油降黏试验及化学降黏试验。对超稠油(90℃时黏度5×104mPa.s以下)掺入轻油,在稠油∶轻油=1∶0.33的比例情况下,降黏效果非常明显,原油70℃时黏度由52×104mPa.s降低到3 374 mPa.s,对后续脱水非常有利;目前所筛选的化学降黏药剂,对该区黏度较小的超稠油具有较好的分散性,能够起到一定的降黏作用;对于黏度更大的原油,需要掺入一定比例的稀油,才能使黏度降低到5×104mPa.s(50℃)以下,达到较好的乳化降黏效果。  相似文献   

5.
从大庆油田采出液中分离得到一株采油功能菌Z25,经16S rDNA序列分析鉴定为Rhodococcus ruber。该菌株能利用烃类为唯一碳源生长并代谢生成生物表面活性剂,达到稳定期发酵液的乳化系数EI24为64%,最佳发酵时间为48小时。原油降解实验表明,该菌株能够降低油品的胶质沥青质含量和原油凝固点,使大庆油田3个稠油样的胶质沥青质含量分别从38.76%,33.25%,35.38%降至36.55%,30.31%,33.73%,凝固点分别从13.5℃,-5℃,3.3℃下降至8℃,-12℃,1℃,改善了原油的物性。同时,Rhodococcus ruberZ25菌株发酵液能够乳化原油,形成稳定的水包油型乳液,降低原油黏度,提高原油流动性;微生物发酵液还能够改善介质表面润湿性,将亲油表面转化为亲水表面。通过物理模拟驱油实验发现,该菌株能大幅提高低温稠油油藏的原油采收率,对三个油藏的采收率提高幅度分别为14.52%、11.71%和17.29%。  相似文献   

6.
为有效开发黏度超过200 mPa·s 的稠油油藏,研究了两亲聚合物稠油活化剂对稠油(黏度400 mPa·s)的降黏效果和驱油性能。结果表明,稠油活化剂溶液黏度随浓度的增加而增加,1500 mg/L活化剂溶液的黏度为39.1mPa·s;活化剂可与沥青质发生较强的极性作用,使沥青质容易从岩石表面脱落;活化剂乳化分散原油效果较好;随活化剂加量增加,原油黏度和油水界面张力降低,活化剂与原油质量比为1∶1 时可将原油黏度降至100 mPa·s以下,活化剂质量浓度为1500 mg/L时的油水界面张力为2.6 mN/m;驱油实验结果表明,活化剂驱油的总采收率为54.45%,好于同浓度的部分水解聚丙烯酰胺(32.73%);稠油活化剂可有效封堵高渗层,改善吸水剖面,活化剂不仅可通过聚集体调整吸水剖面,而且乳化分散稠油后形成的“乳化油滴”同样具备剖面调整的能力,使岩心中的残余阻力系数由乳化前的100增至约200。图15 表2 参17  相似文献   

7.
为了更好地提高稠油油藏开发效果,采取化学生热与催化裂解方式来降低稠油黏度、提高地下稠油的流动能力非常必要。选择NaNO2和NH4Cl溶液作为化学生热剂,通过正交实验优选出生热剂最佳反应条件为:4 mol/L NaNO2,4mol/L NH4Cl,体系pH值为2。该条件下,反应温度和压力在短时间内迅速上升,分别达到峰值204℃和13.6 MPa,达到峰值的时间为6 min,反应基液温度升高149℃。油酸镍催化降黏体系最佳配方为:以反应原油的质量为基准,羧酸盐型油酸镍催化剂0.3%,供氢剂甲酸7%,助剂尿素7%,乳化剂十二烷基苯磺酸钠0.13%。该催化体系的最佳反应温度为280℃。油酸镍催化后,原油黏度由213.8 mPa·s降至74.2 mPa·s,降黏率为65.3%。当化学生热剂与催化裂解剂共同作用时,降黏率可达66.5%,饱和烃和芳烃含量增加,胶质和沥青质含量减小,催化降解效果较好。  相似文献   

8.
为提高含蜡原油的开采与运输效率,挖掘高效嗜蜡菌,笔者以石蜡为唯一碳源,从石油污染土壤中分离出一株嗜蜡菌,对其进行优化培养后,考察了该嗜蜡菌对大庆含蜡原油的除蜡降黏效果,并对其代谢产生的生物表面活性剂性能进行测定。结果表明:该嗜蜡菌能代谢产生脂肽类表面活性剂,具有较强的疏水性及乳化性能;其与含蜡原油作用7 d后,含蜡原油蜡质量分数降低43%、黏度下降18%。该嗜蜡菌对含蜡原油具有一定除蜡降黏作用,可以提高原油流动性能。  相似文献   

9.
在鲁克沁油藏地层温度80℃下,研究了不同浓度的表面活性剂溶液、碱-表面活性剂溶液以及剪切时间对鲁克沁稠油乳状液黏度的改善效果。碱能与稠油中的有机酸发生化学反应产生表面活性物质,表面活性剂能降低油水界面张力,破坏胶质沥青质分子间的氢键,二者具有协同作用。实验测量了在稠油中添加不同浓度表面活性剂、碱、碱-表面活性剂后形成的乳状液黏度,分析碱和表面活性剂对稠油乳化降黏的影响。实验结果表明,碱-表面活性剂二元复合体系比单一表面活性剂的乳化降黏效果更好,剪切时间越长稠油乳状液黏度越低,最终稠油乳状液黏度趋于稳定。经过40 min剪切后,加入浓度为1 000 mg/L的表面活性剂+浓度为300 mg/L的Na2CO3的稠油乳状液黏度降为44 mPa·s,降黏率达到了85%。碱-表面活性剂对鲁克沁稠油乳状液降黏有很好的改善作用,对指导鲁克沁稠油的现场开发具有一定的理论意义和实际应用价值。  相似文献   

10.
降黏泡沫驱结合了降黏剂乳化降黏和泡沫选择性封堵的优势,可进一步提高开发后期深层稠油油藏的采收率。通过室内实验,根据降黏泡沫剂的降黏效果、起泡性能、泡沫稳定性,优选出合适的降黏泡沫剂浓度;通过单岩心驱替实验对比不同驱替方式下降黏泡沫驱驱油特征以及开采效果,通过并联岩心实验研究不同渗透率级差下降黏泡沫的分流能力,明确降黏泡沫驱提高采收率机理。结果表明:降黏泡沫驱过程中,降黏剂可以促进稠油乳化降黏,泡沫可以有效封堵大孔喉,同时抑制氮气窜流。二者结合有效提高波及系数和洗油效率,提高驱替压差,降低含水率。降黏泡沫驱可以在降黏泡沫剂驱的基础上进一步提高13%的采收率。非均质条件下,降黏泡沫驱可以有效降低高渗透岩心窜流,迫使流体转向进入低渗透岩心发挥乳化降黏作用,扩大波及范围的同时提高了洗油效率。降黏泡沫驱技术能显著提高深层低渗透稠油油藏的采收率,其优化了油流分布,增强乳化与减少稠油黏度,为深层稠油高效开发提供了有效策略。  相似文献   

11.
任亚青  吴本芳 《油田化学》2020,37(2):318-324
针对超稠油黏度高、流动性差和地层水矿化度高等现状,以表面活性剂、碱、有机磷酸为原料制得乳化降黏剂,对降黏剂配方进行了优选,研究了矿化度和温度对降黏剂降黏性能的影响,并分析了降黏机理。结果表明,超稠油乳化降黏剂最优配方为:质量比为1∶1的磺酸盐类阴离子表面活性剂YBH与醇醚羧酸盐类的阴、非离子表面活性剂YFBH复配的主剂、碱助剂、耐盐助剂NYZJ-1的质量比为1.1∶0.45∶1.15。在主剂、助剂总加剂量为0.81%(占原油乳状液的质量分数)、乳化温度80℃、油水质量比为7∶3、矿化度为95 g/L的条件下,可使超稠油黏度由316.5 Pa·s(50℃)降至其乳状液的0.0831 Pa·s,降黏率达99.97%,50℃下静置4 h的出水率为5.93%。温度对乳化降黏剂降黏性能的影响较小,经200℃处理2 h后超稠油乳状液的降黏率不变。复配乳化剂各组分间发挥了协同增效作用,增强了体系的降黏性能,提高了乳状液的稳定性。乳化降黏剂降黏效果良好,耐温抗盐,适用于高温高盐油藏。图10表3参15  相似文献   

12.
以正辛基三乙氧基硅烷和锂皂石为原料,利用溶胶-凝胶法一步合成了油基钻井液用增黏提切剂改性锂皂石MLap-1,分别利用红外光谱、热重分析、透射电镜和表面润湿性对其单体进行表征,证明其合成成功。通过对改性锂皂石MLap-1单剂评价发现,该剂能够提高油水比为80∶20乳液的乳化效率和破乳电压,在0.3%加量下,乳液破乳电压值达到1200 V以上,使得乳液的表观黏度和动切力由12 mPa·s和0 Pa增大至23 mPa·s和10 Pa,同时能够抗200 ℃高温。以改性锂皂石MLap-1为基础构建的高密度油基钻井液在200 ℃老化后,其动切力维持在4 Pa以上,低剪切速率切力维持在3 Pa以上,破乳电压高于1000 V,滤失量低于5.0 mL,很好地维护了钻井液的悬浮稳定性,保持了良好的乳化稳定性和降滤失效果。为油基钻井液进一步钻探深井、超深井提供了技术支持。   相似文献   

13.
针对蒸汽吞吐、蒸汽驱的低渗透区超稠油流动阻力大、开采困难等问题,提出低渗透区超稠油原位催化改质降黏技术。采用反应釜法和物模实验法,筛选高效原位改质催化剂,研究催化剂的注入方式,并筛选5种催化剂及其改质条件。研究表明:以有机锌为催化剂,催化剂用量为0.1%、稠油含水率为50%时,超稠油具有较好的改质降黏效果;物模实验法原位催化改质降黏效果优于反应釜法,稠油含水率为50%、催化剂用量为0.1%、反应温度为240 ℃、填砂管回压为8~10 MPa和反应时间为24 h条件下,稠油黏度由145 000 mPa·s降至54 260 mPa·s,降黏率达62.58%;物模实验法改质油的密度和酸值下降,重组分(胶质和沥青质)含量减少10.85%,300、500 ℃前馏分分别提高了6.75%、17.29%。在240 ℃、10 MPa条件下,采用自制生物质基调剖剂封堵优势渗流通道,将催化剂注入低渗填砂管后水驱,改质稠油黏度降至68 450 mPa·s,降黏率达52.79%,流动阻力减少19.74%,采出率达到95.22%,稠油综合采出率由46.94%增至85.13%。该方法为超稠油蒸汽吞吐、蒸汽驱低渗透区域的稠油进行原位催化改质降黏提高采收率提供了借鉴。  相似文献   

14.
针对双水平井SAGD常规蒸汽循环预热启动存在的蒸汽预热降黏慢、循环预热时间长、蒸汽消耗量大、井间动用不均衡等问题,采用室内实验和数值模拟相结合的方法,对溶剂辅助SAGD预热启动技术的原理与适用性进行了研究。研究结果表明:溶剂辅助SAGD具有缩短预热时间、减少蒸汽用量、实现井间均匀连通的效果,适用于水平段井间渗透率不小于500 mD、含油饱和度不小于60%、50℃原油黏度为2.0×104~10.0×104mPa·s的超稠油油藏。形成的油藏筛选条件为其他稠油油藏开展溶剂辅助SAGD启动技术提供了筛选依据。  相似文献   

15.
塔河油田两种主要稠油井筒降粘技术的分析与评价   总被引:2,自引:0,他引:2  
对塔河油田不同稠油降粘举升工艺适应性分析结果表明,掺稀油和化学降粘两种稠油井筒降粘技术适用于塔河油田6区稠油井的开采。简要介绍了两种降粘技术原理,实验室和油井使用结果表明,掺稀油技术适用于稠油粘度大于50000mPa·S、油井含水低于20%的自喷井,在稀油与稠油体积比l:2至1:1时,降粘率达90%以上;化学降粘技术选择的乳化降粘剂XS-2具有抗盐性强、使用温度范围宽的特点,在油水体积比7:3、温度60℃、XS-2用量1.0kg/t原油条件下,T433油井稠油粘度由3156mPa·s降低至345mPa·s。  相似文献   

16.
利用HLB值法筛选稠油乳化降黏体系   总被引:1,自引:0,他引:1  
在油水比为7∶3的情况下,利用HLB值法确定出了大庆稠油乳化的最佳HLB值为8.82,并根据此法确定出了表面活性剂AOS的HLB值为15。对于大庆稠油,根据其形成乳状液的最佳HLB值及不同表面活性剂的HLB值,通过计算得到了该稠油的乳化降黏体系配方为m(AEO3)∶m(AES)=11.5∶1。在油水质量比为7∶3,降黏剂用量0.7%条件下,对大庆稠油的降黏率达77.8%,90min沉降脱水率大于83.3%。  相似文献   

17.
特超稠油油藏蒸汽吞吐数值模拟   总被引:2,自引:0,他引:2  
蒸汽吞吐是增加稠油产量的一种经济而有效的方法。克拉玛依油田九7区稠油在50℃时,地面脱气原油的粘度为2400~961000mPa·s,平均452029mPa·s,属超稠油油藏。针对克拉玛依油田九7区浅层特超稠油油藏的特点,利用数值模拟方法研究了蒸汽吞吐的主要注采参数。对注汽强度、注汽速度、周期注汽量、注汽压力、焖井时间和蒸汽干度等注汽参数进行了优化计算,推荐了注采参数的优化方案,在此基础上对蒸汽吞吐井的吞吐效果进行了预测,得到了不同周期的周期产油量等。计算结果对于克拉玛依油田九7区特超稠油油藏进行蒸汽吞吐开采具有一定的指导意义。  相似文献   

18.
针对目前临盘油田稠油油藏开发中存在的采出液含水率高、产油量低、普通水驱采收率低等问题,开展了稠油自乳化降黏吞吐技术研究。通过室内实验优选了最佳配方,然后进行了温度、 质量分数、矿化度和反应时间等因素对驱油效果影响的评价及物模驱替评价,得出了适合临盘油田稠油低温高矿化度地层条件的降黏剂的使用条件。现场小型试验表明,NB-5034A降黏剂能有效提高临盘稠油井采收率。  相似文献   

19.
针对稠油胶质、沥青质含量高,黏度和凝点高,给其开采和运输带来困难的情况,以丙烯酸异构酯、苯乙烯、马来酸酐为聚合单体,甲苯为溶剂,过氧化二苯甲酰为引发剂,制备了一种广谱型支状油溶性降黏剂(YGZ型油溶性降黏剂),对制备条件进行优化,考察其对多种油品的降黏效果,并对其降黏机理进行初步分析。结果表明:YGZ型油溶性降黏剂的适宜制备条件为:共聚物单体丙烯酸异构酯、马来酸酐、苯乙烯的摩尔比为5:1:3,过氧化二苯甲酰加入量(w)1.0%,反应温度90 ℃,反应时间6 h;该降黏剂可使黏度(50 ℃)为2 106 mPa?s的伊拉克原油黏度下降70.4%;含有支链结构的异构型降黏剂的降黏效果比正构型降黏剂好;该降黏剂具有较好的广谱性,可用于多种稠油降黏。  相似文献   

20.
针对稠油水平井,以提高井筒原油温度,改善原油流动性为目标,结合目前常用的电加热工艺技术,研发出一种稠油水平井油层段电加热工艺,并对工艺中的关键工具进行设计及绝缘试验。根据能量守恒定律,建立了油层段电加热工艺井筒温度场,并对典型井工艺实施进行设计评价。H05井计算实例表明,油层段流体温度由64 ℃加热到105 ℃,井口温度由55.5 ℃提高到84.9 ℃,泵入口温度由60.8 ℃提高到91.3 ℃,泵入口原油黏度由777.3 mPa · s降低到127.8 mPa · s,井筒摩阻由186.2 kPa降低到62.6 kPa。油层段电加热工艺可以明显提高泵入口原油温度,降低原油黏度及井筒摩阻,改善井筒原油流动性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号