首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A generalized model is synthesized to charaterize the asymmetric hysteresis force-velocity(F-v) properties of the magneto-rheological (MR fluids damper. The model is represented as afunction of the command current, excitation frequency, and displasement amplitude, based on thesymmetric and asymmetric sigmoid functions. The symmetric hysteresis damping properties of thecotrollable MR.damper and properties of the conventional passive hydraulic damper can also bedescribed by the proposed model. The validity of the model is verified by experiments, which showthat the results calculated from the model are consistent with the measured data. In addition, it isshown that the model applies to a wide vibration frequency range. The proposed model has potentialapplication in vehicle suspension design employing the symmetry MR-damper, and also in developingtie asymmetry MR-Damper especially for the vehicle suspension attenuation.  相似文献   

2.
MR阻尼器控制与滞环特性相分离的F-v模型   总被引:1,自引:0,他引:1  
提出了一种基于对称和不对称Sigmoid函数,描述半主动可控磁流变液(MR)阻尼器阻尼力—相对速度(F-v)数学模型。该模型准确地描述了MR阻尼器非线性饱和的直流电流控制和对称滞环F-v的工作特性,以及激励频率和幅度对阻尼力的强影响特性,具有精度高和电流控制增益与滞环算子相分离的特点。将该模型与车辆悬架动力学模型结合分析,仿真结果表明MR阻尼器对实现新一代智能车辆悬架系统设计有潜在的意义,所提出的模型对进一步推动车辆悬架减振控制器设计研究有重要作用。  相似文献   

3.
The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part Ⅰ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness.  相似文献   

4.
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.  相似文献   

5.
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.  相似文献   

6.
The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller has not been proposed for the MR full-vehicle suspension system, and a systematic analysis method has not been established for evaluating the multi-objective suspension performances of MR full-vehicle vertical, pitch and roll motions. For this purpose, according to the 7-degree of freedom (DOF) fullvehicle dynamic system, a generalized 7-DOF MR and passive full-vehicle dynamic model is set up by employing the modified Boucwen hysteretic force-velocity (F-v) model of the MR damper. A semi-active controller is synthesized to realize independent control of the four MR quarter-vehicle sub-suspension systems in the full-vehicle, which is on the basis of the proposed modified skyhook damping scheme of MR quarter-vehicle sub-suspension system. The proposed controller can greatly simplify the controller design complexity of MR full-vehicle suspension and has merits of easy implementation in real application, wherein only absolute velocities of sprung and unsprung masses with reference to the road surface are required to measure in real time when the vehicle is moving. Furthermore, a systematic analysis method is established for evaluating the vertical, pitch and roll motion properties of both MR and passive full-vehicle suspensions in a more realistic road excitation manner, in which the harmonic, rounded pulse and real road measured random signals with delay time are employed as different road excitations inserted on the front and rear two wheels, by considering the distance between front and rear wheels in full-vehicle. The above excitations with different amplitudes are further employed as the road excitations inserted on left and right two wheels for evaluating the roll motion property. The multi-objective suspension performances of ride comfort and handling safety of the proposed MR full-vehicle suspensi  相似文献   

7.
The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control(SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological(MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity(F-v) model and its inverse model of MR damper, as well as the proposed continuous modulation(CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller(SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.  相似文献   

8.
Magneto-rhelological(MR) dampers are devices that employ rheological fluids to modify their mechanical properties. Their mechanical simplicity, high dynamic range, lower power requirements, large force capacity, robustness and safe manner of operation in cases of failure have made them attractive devices for semi-active real-time control in civil, aerospace and automotive applications. Time response characteristic is one of the most important technical performances of MR dampers, and response time directly affects the control frequency, application range and the actual effect of MR dampers. In this study, one kind of finite difference solution for predicting the response time of magneto-rheological dampers from "off-state" to "on-state" is put forward. A laminar flow model is used to describe the flow in the MR valve, and a bi-viscous fluid flow model is utilized to describe the relationship of shear stress and shear rate of MR fluid. An explicit difference format is used to discretize the Novior-Stoks equation, and stability condition of this algorithm is built by Von-Neumann stability criterion. The pressure gradient along the flow duct is solved by a dichotomy algorithm with iteration, and the changing curve of the damping force versus time of MR damper is obtained as well. According to the abovementioned numerical algorithm, the damping forces versus time curves from "off-state" to "on-state" of a cylindrical piston type MR damper are computed. Moreover, the MR damper is installed in a material test system(MTS), the magnetic field in the wire circles of the MR damper is "triggered" when the MR damper is imposed to do a constant speed motion, and the damping force curves are recorded. The comparison between numerical results and experimental results indicates that this finite difference algorithm can be used to estimate the response time delay of MR dampers.  相似文献   

9.
In this article, a new magneto rheological (MR) sponge damper is proposed for suppression of vibrations in a washing machine. The article presents design optimization of geometric parameters of MR sponge damper (MRSD) using the finite element analysis (FEA) and first order derivative techniques for a washing machine. The article explains the hysteresis behavior and the relationship of damping force with input current for the proposed MRSD. Moreover, the characteristics of the MRSD such as energy dissipation and equivalent damping coefficient are investigated experimentally in terms of input current and excitation amplitude. The passive dampers installed in washing machine are ineffective in reducing unwanted vibrations at resonant frequencies due to real time unbalanced mass. For this purpose, a test setup is established in order to compare the performance of passive dampers with the proposed MRSDs in a washing machine. It is noticed that MRSDs reduce average vibrations of 75.61 % in a low frequency band, whereas in a high frequency band, the MRSDs lessen average vibrations of 30.57 % in a washing machine. In order to determine the performance of proposed design MRSD, a detailed comparison of the performance parameters, such as total damping force, passive force, maximum average vibrations after suppression by MR dampers, maximum current and power ratings is provided with the existing designs of MR damper for washing machine from the literature.  相似文献   

10.
为实现磁流变减振器运行中的健康状态监测并满足轿车磁流变减振器控制器阻尼力的需要,设计了一种可同时测量磁流变减振器压缩和复原行程中动态阻尼力的压阻式力传感器。根据汽车磁流变减振器的工作特性和压阻式压力传感器的设计原则,对阻尼力传感器进行了整体结构设计;采用理论计算与有限元仿真相结合的方法,以达到设计量程、获得较大灵敏度和固有频率为设计目标,确定了传感器芯片尺寸;通过分析论证,确定了传感器芯片型式、制作材料;研究了压阻系数与晶向的关系,确定了电阻排布方向和位置、电阻条尺寸、电阻条折弯数,完成了芯片的版图设计。  相似文献   

11.
To research the properties of a new kind of smart controllable MR (magnetorheological) fluid, in this paper, the rheological models are discussed. On the basis of analyzing the structural forms of MR dampers, an improved structure of the MR damper is introduced; the properties of the novel MR damper are then tested. The experimental results reveal that the Herschel-Bulkley model predicts the force-velocity well; the damping properties of the ameliorated structure of the MR damper have improved; when the excitation is a trigonal signal, the MR damper reveals a thinning effect at high velocity; and when the excitation is a sinusoidal signal, the MR damper reveals a nonlinear hysteretic property between the damping force and relative velocity. Finally, the main unsolved problems have been put forward. __________ Translated from Ningxia Engineering Technology, 2005, 24 (4) (in Chinese)  相似文献   

12.
为了解决半主动悬架传统变论域模糊控制器过度依赖经验规则的问题,提出了一种基于模糊神经网络的变论域T-S模糊控制策略。首先,根据磁流变减振器阻尼特性的实验结果,建立基于自适应模糊神经网络的减振器阻尼力模型及1/2车辆半主动悬架动力学模型;其次,建立悬架系统T-S模糊控制器,同时为了实时调节T-S模糊控制器变量的论域,采用模糊神经网络结构描述伸缩因子的变化。仿真结果表明,笔者提出的变论域模糊控制策略能够有效提高车辆行驶平顺性和操作稳定性。  相似文献   

13.
减振器的主要功能是提供阻尼力以衰减和抑制车辆系统振动,对高速动车组动力性能有十分重要的影响。既有研究主要将减振器处理为阻尼力以研究车辆系统动力性能,极少从动力学和结构可靠性角度关注减振器自身承受的载荷。制作某型高速动车组转向架抗蛇行减振器、轴箱减振器、二系横向和垂向减振器测力元件,在大同-西安高速线路上测试并获得该型动车组运行过程中四种减振器载荷引起的应变信号。对测试数据进行处理和分析,获得高速动车组运行工况下四种减振器载荷的时间历程,分析减振器载荷的时域和频域特征。采用雨流计数法统计减振器载荷峰谷值和频次,获得不同速度等级下载荷分布。结果表明,高速动车组抗蛇行减振器载荷最大、二系横向减振器载荷最小。轴箱减振器相对速度最大、二系横向减振器相对速度最小。减振器载荷总体上呈正态分布,而且一般有列车运行速度越高减振器载荷越大。列车正线行驶时曲线半径对轴箱减振器、二系垂向减振器以及二系横向减振器载荷影响不明显,列车速度和线路小半径曲线对抗蛇行减振器载荷影响明显。  相似文献   

14.
This study describes the development, modeling, and testing of a hybrid damper for semi-active suspension. The goal of this study is to improve the performance of conventional passive oil dampers using a magneto-rheological (MR) accumulator that consists of a gas accumulator and an MR device. The level of damping is continuously variable by means of control of the applied current in an MR device that is fitted to a floating piston that separates the gas and oil chamber. A small MR device is used to resist the movement of the floating piston. At first, a mathematical model that describes all flows within the damper is formulated and developed in Matlab/Simulink. The MR device is also devised. A mathematical model is adopted to characterize the performance of the device. The formulas derived for the different components of the damper force are combined into a full damper model. Then, the applicability of the MR device to a conventional passive oil damper is tested in a manufactured test environment and evaluated in terms of the damping force vs. the piston velocity. From the results, it is possible to ascertain the MF device’s capability to work as a damper that can supply a variable damping force. Moreover, this research affords a lot of new information about the applicability of MR devices and improvement of the damping force.  相似文献   

15.
汽车磁流变减振器阻尼特性理论计算与试验   总被引:3,自引:0,他引:3  
从研究的实用性和结构的可行性出发,建立较为精确的磁流变减振器动力学模型是设计控制策略和获得良好控制效果的关键因素之一。根据车辆悬架的各种要求,设计和分析磁流变减振器的各参数对阻尼特性的影响对于现代汽车设计来说是非常必要的。根据汽车减振的要求和磁路设计原则,设计出单输出杆阻尼孔式汽车磁流变减振器。基于流体力学理论和磁流变液流变特性,详细推导出磁流变减振器的阻尼力理论计算模型。对磁流变减振器的阻尼特性进行理论分析和计算,并探讨减振器各结构参数对减振器阻尼特性的影响。最后采用试验测试磁流变减振器的速度特性,得到不同电流输入时阻尼力与速度的关系曲线,试验测试的结果和理论计算基本吻合。采用流体力学理论推导出的磁流变减振器力学模型能为建立减振器控制模型提供可靠的理论指导。  相似文献   

16.
This paper evaluates performance of a quarter-vehicle magneto-rheological (MR) suspension system with respect to different tire pressure. In order to achieve this goal, controllable MR damper that satisfies design specifications for a midsized commercial passenger vehicle is designed and manufactured based on the optimized damping force levels and mechanical dimensions. After experimentally evaluating the field-dependent characteristics of the manufactured MR damper, the quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed in order to investigate the ride comfort. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. Ride comfort characteristics such as vertical acceleration RMS (root mean square) and WRMS (weighted RMS) of sprung mass are evaluated under bump and random road conditions using a quarter-vehicle test facility.  相似文献   

17.
为降低汽车磁流变悬架系统中传感器成本,提高系统可靠性,提出了一种具有非对称力学特性的汽车磁流变减振器结构设计方案及分级控制方法。根据结构设计方案,对其力学输出特性进行了理论分析,并进行了样机加工与试验测试。为分析分级控制算法在相应半主动悬架中的控制效果,建立了1/4车辆悬架动力学模型,进行了动力学仿真分析。研究结果表明,所设计的磁流变减振器具有连续输出非对称阻尼力的工作特性,验证了设计思路和方法的有效性;采用分级控制算法的半主动悬架在适应道路条件的变化方面比被动控制下的悬架具有更大的优越性;虽然分级控制的控制效果在部分路面下没有天棚控制的控制效果好,但基于分级控制的减振控制系统可以节约成本并提高可靠性,具有较好的应用前景。  相似文献   

18.
设计了磁流变减振器磁芯磁路,建立了磁路的仿真模型,仿真研究了磁路的磁场特性,用实验的方法对仿真模型进行了验证和修正;在此基础上,建立了整个磁流变减振器的仿真模型,仿真研究了其磁场分布规律及不同参数下阻尼孔附近的磁通密度.研究结果表明,磁芯直径、工作缸壁厚、阻尼通道长度和线圈电流是影响磁场特性的主要因素,合理选择磁路结构参数可使其性能得到最大发挥.设计并制造出一种车辆单筒充气式磁流变减振器,对其进行了台架试验,得到不同电流下的减振器示功特性图,研究发现,通过调节减振器励磁线圈中的电流获得不同强度的磁场,在磁场作用下,磁流变液粘度发生变化,从而改变减振器的阻尼特性,减振器的饱和工作电流约为2A.试验验证了磁路设计的正确性,并为实现车辆磁流变半主动空气悬架控制研究奠定了基础.  相似文献   

19.
磁流变减振器和半主动悬架可以同时兼顾车辆操纵稳定性和行驶安全性,是目前汽车电子技术的研究热点。磁流变减振器的设计大多只考虑某一优化目标,基于Pareto集多目标方法和带精英策略的非支配排序遗传算法(the elitist Nondominated Sorting Genetic Algorithm,NSGA-Ⅱ),以阻尼力和动力可调系数为优化目标,设定7个优化变量,构建了车用磁流变减振器多目标优化模型与实现算法。分析了7个优化变量对阻尼力和动力可调系数的设计敏感性,并通过有限元分析和试验验证优化解的可靠性。研究发现:阻尼通道间隙对优化目标影响最大,最大阻尼力和最大动力可调系数呈负相关关系。该多目标优化计算的最优解满足实际工程需求,证明了提出的优化方法快速有效,为磁流变减振器的设计提供了可靠的工具。  相似文献   

20.
This paper presents a road-adaptive control law for semi-active vehicle suspensions. In semi-active suspensions, damping coefficients are controlled so as to make the actual damper force as close to the desired damper force as possible at any time instance. The proposed control law consists of a road-adaptive sky-hook damping algorithm and a Road Detection Algorithm (RDA). This approach leads to the sprung mass and unsprung mass velocity feedback control law with time varying gains. The gains are tuned by the RDA. To evaluate the performance enhancement brought about by the proposed control law, the performance of a semi-active suspension with the proposed control law is compared to those of the sky-hook controlled semi-active suspension and a passive suspension. The controller has been implemented experimentally on a quarter car test rig and a semi-active damper with a 19 damping rates has been used to generate the desired semi-active force. The proposed control law provides adequate damping for the wheel hop frequency and improved performance compared to that of the sky-hook control law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号