首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the dynamics of surface and intracellular structures during cell wall formation from the reverting protoplast of Schizosaccharomyces pombe were reviewed, and the correlation between cell wall formation and actin cytoskeleton, which is the most important conductor of the mechanism, is described in this paper. A close spatial and temporal relationship between actin cytoskeleton and cell wall formation was found by using wild type and actin point-mutant cps8 of S. pombe. Concomitant with the cell wall formation, dynamic behavior of the intracellular secretion machinery, especially the Golgi apparatus and secretory vesicles, was analyzed by three-dimensional reconstruction of 40 to 80 serial sections at five reverting stages. Total reverting protoplast volume increased by 3.8 and 4.3 times at 3 and 5 h, respectively, and the volume of the Golgi apparatus in the corresponding stages increased 2.3- and 2. 5-fold over the same periods. The number of secretory vesicles also markedly increased by 3.4 and 5.8 times over that of the corresponding reverting protoplasts. Actin point-mutant cps8 cells have abnormal structure in the cell wall and septum, and the distribution pattern of the actin cytoskeleton during the reversion process was different from wild-type protoplasts. The profiles of actin showed one or two thick cables and patches in the cytoplasm which remained throughout reversion. The development of crosslinkage of the glucan fibrils which are beta-1,3-glucan in nature on the reverting protoplast surface was defective; the glucan networks consisted of thin, rope-shaped fibrils up to 30 nm in width which formed a ribbon-shape 200 nm wide in wild-type reverting protoplasts. The intrafibrillar space is not filled with amorphous particles of alpha-galactomannan in nature. The secretion machinery was seen to have a similar profile as the wild type. The above results suggest that actin cytoskeleton may control secretion of beta-1,6-glucan and other cell wall substances such as alpha-glucan and alpha-galactomannan rather than beta-1,3-glucan. Study of the role of actin cytoskeleton in the cell wall formation is contributing to the development of antifungal agents together with basic cell biology.  相似文献   

2.
The dental profession faces educational, scientific, and ethical challenges in orofacial pain and headache. Past educational deficiencies are being addressed with guidance and recommendations from the AADS, the ADA, and the AAOP. With education and further research, many dental ethical questions in TMD will be resolved. The educational process must continue with a solid foundation in scientific basis provided in university settings. The appropriate use of TMD diagnostic machines, treatment modalities, and management of perpetuating factors such as sleep will evolve with the new knowledge of scientific discovery. These are some of the many challenges of orofacial pain and headache disorders that warrant special consideration.  相似文献   

3.
The spg1 gene (septum-promoting GTPase) was cloned as a multicopy suppressor of a dominant-negative mutant of the Cdc7p kinase. It encodes a small GTPase of the Ras superfamily. spg1 is an essential gene. Null or heat-sensitive alleles do not make a division septum, but growth, S-phase, and mitosis continue in the absence of cell division, producing elongated, multinucleate cells. Increased expression of Spg1p induces septum formation in G2, S-phase, and pre-Start G1-arrested cells. This requires the activity of Cdc7p kinase, but not p34(cdc2). Increased expression of Cdc7p bypasses the requirement for Spg1p. Spg1p and Cdc7p can be coimmunoprecipitated from cell extracts, and interact in the two-hybrid system. These data indicate that Spg1p is a key element in controlling the onset of septum formation in Schizosaccharomyces pombe, and that it acts through the Cdc7p kinase.  相似文献   

4.
5.
Differentiated cells have been established in monolayer culture from adult rat liver and their ultrastructural and biochemical features characterized after 20-30 generations. Hepatocytes were isolated by enzyme perfusion of the liver followed by treatment with papain, which allowed cultures to be established more readily and to be cloned at an early stage. Ultrastructural studies indicated that the cells were derived largely from hepatic parenchymal cells. The cells showed structural modifications during primary culture but were stable thereafter. The cultured cells retained some differentiated functions unique to liver cells, including the synthesis of ornithine form arginine and the secretion of serum proteins, albumin, chi- and beta-globulins.  相似文献   

6.
We report a clinicopathologic feature of primary cutaneous T-cell lymphoma (CTCL) in a five-year-old boy with increasing swelling of his cheek since two years of age. Histologically, an infiltrate of atypical lymphoid cells with mature T-cell phenotype and clonality was prominent from the dermis to the subcutaneous tissue of the cheek. Although little effect was seen with aggressive multidrug-combined chemotherapy, therapy with interferon-alpha and steroids achieved a prolonged remission. This patient may provide important clues to understanding the clinicopathologic feature of rare primary CTCL in young children.  相似文献   

7.
8.
Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is one of the most abundant protein kinases in the brain and has a broad substrate specificity [M.K. Bennett, N.E. Erondu, M.B. Kennedy, Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain, J. Biol. Chem. 258 (1983) 12735-12744 [1]; J.R. Goldenring, B. Gonzalez, J.S. McGuire, Jr., R.J. DeLorenzo, Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins, J. Biol. Chem. 258 (1983) 12632-12640 [4]; M.B. Kennedy, P. Greengard, Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites, Proc. Natl. Acad. Sci. U.S.A. 78 (1981) 1293-1297 [10]; T. Yamauchi, H. Fujisawa, Evidence for three distinct forms of calmodulin-dependent protein kinases from rat brain, FEBS Lett. 116 (1980) 141-144 [20]; T. Yamauchi, H. Fujisawa, Purification and characterization of the brain calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tryptophan 5-monooxygenase, Eur. J. Biochem. 132 (1983) 15-21 [21]]. The alpha and beta isoforms of CaM kinase II are known to be expressed almost exclusively in the brain [P.I. Hanson, H. Schulman, Ca2+/calmodulin-dependent protein kinases, Annu. Rev. Biochem. 61 (1992) 559-601 [7]]. To elucidate the cellular function of CaM kinase II, we introduced cDNA of wild-type CaM kinase II alpha- or beta-isoform, and of mutant alpha-isoform (Ala-286 kinase) into two different types of neuroblastoma, Neuro2a (Nb2a) and NG108-15, thus generating cell lines stably producing elevated levels of these kinases. The mutant alpha-isoform is markedly suppressed in its autophosphorylation by replacement of Thr-286 with Ala [Y.-L. Fong, W.L. Taylor, A.R. Means, T.R. Soderling, Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II. Mutation of threonine 286 to alanine and aspartate, J. Biol. Chem. 264 (1989) 16759-16763 [3]; P.I. Hanson, M.S. Kapiloff, L.L. Lou, M.G. Rosenfeld, H. Schulman, Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation, Neuron 3 (1989) 59-70 [6]; S. Ohsako, H. Nakazawa, S. Sekihara, A. Ikai, T. Yamauchi, Role of Threonine-286 as autophosphorylation site for appearance of Ca2+-independent activity of calmodulin-dependent protein kinase II alpha subunit, J. Biochem. 109 (1991) 137-143 [15]]. We provided evidence that CaM kinase II played a role in regulating neurite outgrowth and growth cone motility in these cells, and that the autophosphorylation is essential for the kinase to sufficiently exert its cellular function in vivo [Y. Goshima, S. Ohsako, T. Yamauchi, Overexpression of Ca2+/calmodulin-dependent protein kinase II in Neuro2a and NG108-15 neuroblastoma cell lines promotes neurite outgrowth and growth cone motility, J. Neurosci. 13 (1993) 559-567 [5]]. Neurite outgrowth was further stimulated by treatment with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or chelerythrine, inhibitors of protein kinase C [T. Nomura, K. Kumatoriya, Y. Yoshimura, T. Yamauchi, Overexpression of alpha and beta isoforms of Ca2+/calmodulin-dependent protein kinase II in neuroblastoma cells-H-7 promotes neurite outgrowth, Brain Res. 766 (1997) 129-141 [14]]. The morphological change stimulated with protein kinase inhibitors was rapid and was greater in the beta than alpha cells. Some substrates of CaM kinase II related to neurite outgrowth were detected in cells overexpressing the kinase stimulated with H-7. These results suggest that CaM kinase II and protein kinase C play an important role in the control of cell change. (c) 1998 Elsevier Science B.V. All rights reserved.  相似文献   

9.
Soluble factors from serum such as lysophosphatidic acid (LPA) are thought to activate the small GTP-binding protein Rho based on their ability to induce actin stress fibers and focal adhesions in a Rho-dependent manner. Cell adhesion to extracellular matrices (ECM) has also been proposed to activate Rho, but this point has been controversial due to the difficulty of distinguishing changes in Rho activity from the structural contributions of ECM to the formation of focal adhesions. To address these questions, we established an assay for GTP-bound cellular Rho. Plating Swiss 3T3 cells on fibronectin-coated dishes elicited a transient inhibition of Rho, followed by a phase of Rho activation. The activation phase was greatly enhanced by serum. In serum-starved adherent cells, LPA induced transient Rho activation, whereas in suspended cells Rho activation was sustained. Furthermore, suspended cells showed higher Rho activity than adherent cells in the presence of serum. These data indicate the existence of an adhesion-dependent negative-feedback loop. We also observed that both cytochalasin D and colchicine trigger Rho activation despite their opposite effects on stress fibers and focal adhesions. Our results show that ECM, cytoskeletal structures and soluble factors all contribute to regulation of Rho activity.  相似文献   

10.
A conditional heat-sensitive mutation in the cdc14 gene of the fission yeast Schizosaccharomyces pombe results in failure to form a septum. Cells become highly elongated and multinucleate as growth and nuclear division continue in the absence of cell division. This article describes the cloning of the cdc14 gene and the identification of its product, a protein of 240 amino acids, p28cdc14. A null allele of the cdc14 gene shows that the gene is essential for septum formation and completion of the cell-division cycle. Overexpression of the gene product, p28cdc14, causes cell-cycle arrest in late G2 before mitosis. Cells leaking past the block activate p34cdc2 kinase and show condensed chromosomes, but the normal rearrangements of the microtubules and microfilaments that are associated with the transition from interphase to mitosis do not occur. Overexpression of p28cdc14 in mutants, in which the timing of mitosis is altered, suggests that these effects may be mediated upstream of the mitotic inhibitor wee1. These data are consistent with the idea that p28cdc14 may play a role in both the initiation of mitosis and septum formation and, by doing so, be part of the mechanism that coordinates these two cell-cycle events.  相似文献   

11.
We cloned the myo3+ gene of Schizosaccharomyces pombe which encodes a type-II myosin heavy chain. myo3 null cells showed a defect in cytokinesis under certain conditions. Overproduction of Myo3 also showed a defect in cytokinesis. Double mutant analysis indicated that Myo3 genetically interacts with Cdc8 tropomyosin and actin. Myo3 may be implicated in cytokinesis and stabilization of F-actin cables. Moreover, the function of Myo2 can be replaced by overexpressed Myo3. We observed a modest synthetic interaction between Myo2 and Myo3. Thus, Myo2 and Myo3 seem to cooperate in the formation of the F-actin ring in S. pombe.  相似文献   

12.
The synthesis of mevalonate, a molecule required for both sterol and isoprene biosynthesis in eukaryotes, is catalysed by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Using a gene dosage approach, we have isolated the gene encoding HMG-CoA reductase hmgl+, from the fission yeast Schizosaccharomyces pombe (Accession Number L76979). Specifically, hmgl+ was isolated on the basis of its ability to confer resistance to lovastatin, a competitive inhibitor of HMG-CoA reductase. Gene disruption analysis showed that hmgl+ was an essential gene. This result provided evidence that, unlike Saccharomyces cerevisiae, S. pombe contained only a single functional HMG-CoA reductase gene. The presence of a single HMG-CoA reductase gene was confirmed by genomic hybridization analysis. As observed for the S. cerevisiae HMGlp, the hmgl+ protein induced membrane proliferations known as karmellae. A previously undescribed 'feed-forward' regulation was observed in which elevated levels of HMG-CoA synthase, the enzyme catalysing the synthesis of the HMG-CoA reductase substrate, induced elevated levels of hmgl+ protein in the cell and conferred partial resistance to lovastatin. The amino acid sequences of yeast and human HMG-CoA reductase were highly divergent in the membrane domains, but were extensively conserved in the catalytic domains. We tested whether the gene duplication that produced the two functional genes in S. cerevisiae occurred before or after S. pombe and S. cerevisiae diverged by comparing the log likelihoods of trees specified by these hypotheses. We found that the tree specifying post-divergence duplication had significantly higher likelihood. Moreover, phylogenetic analyses of available HMG-CoA reductase sequences also suggested that the lineages of S. pombe and S. cerevisiae diverged approximately 420 million years ago but that the duplication event that produced two HMG-CoA reductase genes in the budding yeast occurred only approximately 56 million years ago. To date, S. pombe is the only unicellular eukaryote that has been found to contain a single HMG-CoA reductase gene. Consequently, S. pombe may provide important opportunities to study aspects of the regulation of sterol biosynthesis that have been difficult to address in other organisms and serve as a test organism to identify novel therapies for modulating cholesterol synthesis.  相似文献   

13.
While most pediatric patients with peroneal spastic flatfoot demonstrate tarsal coalitions, not all do. The absence of coalition may present a diagnostic challenge and make appropriate treatment difficult. Past and present etiologic theories, diagnostic modalities, and treatments are outlined in this article. The common peroneal nerve block is of great value in the diagnosis and treatment of peroneal spastic flatfoot with or without coalition. With adjunctive treatments, increased motion and decreased symptomatology are often obtained. A protocol, applied to five cases described herein, is suggested.  相似文献   

14.
Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small ( approximately 570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.  相似文献   

15.
The Schizosaccharomyces pombe cdc2-3w wee1-50 double mutant displays a temperature-sensitive lethal phenotype termed mitotic catastrophe. Six mitotic catastrophe suppressor (mcs1-6) genes were identified in a genetic screen designed to identify regulators of cdc2. Mutations in mcs1-6 suppress the cdc2-3w wee1-50 temperature-sensitive growth defect. Here, the cloning of mcs4 is described. The mcs4 gene product displays significant sequence homology to members of the two-component system response regulator protein family. Strains carrying the mcs4 and cdc25 mutations display a synthetic osmotic lethal phenotype along with an inability to grow on minimal synthetic medium. These phenotypes are suppressed by a mutation in wee1. In addition, the wis1 gene, encoding a stress-activated mitogen-activated protein kinase kinase, was identified as a dosage suppressor in this screen. These findings link the two-component signal transduction system to stress response and cell cycle control in S. pombe.  相似文献   

16.
17.
Premature initiation of cytokinesis can lead to loss of chromosomes, and 'cutting' of the nucleus. Therefore, the proper spatial and temporal co-ordination of mitosis and cytokinesis is essential for maintaining the integrity of the genome. The fission yeast cdc16 gene is implicated both in the spindle assembly checkpoint and control of septum formation. To identify other proteins involved in these controls, we have isolated multicopy suppressors of the cdc16-116 mutation, and the characterization of one of these, dma1 (defective in mitotic arrest), is presented here. dma1 is not an essential gene, but in a dma1 null background (dma1-D1) the function of the spindle assembly checkpoint is compromised. If assembly of the spindle is prevented, dma1-D1 cells do not arrest, the activity of cdc2 kinase decays and cells form a division septum without completing a normal mitosis. dma1-D1 cells also show an increased rate of chromosome loss during exponential growth. Upon ectopic expression from an inducible promoter, dma1p delays progress through mitosis and inhibits septum formation, giving rise to elongated, multinucleate cells. We propose that dma1 is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is impaired.  相似文献   

18.
Ribonucleotide reductase activity is required for generating deoxyribonucleotides for DNA replication. Schizosaccharomyces pombe cells lacking ribonucleotide reductase activity arrest during S phase of the cell cycle. In a screen for hydroxyurea-sensitive mutants in S. pombe, we have identified a gene, liz1(+), which when mutated reveals an additional, previously undescribed role for ribonucleotide reductase activity during mitosis. Inactivation of ribonucleotide reductase, by either hydroxyurea or a cdc22-M45 mutation, causes liz1(-) cells in G2 to undergo an aberrant mitosis, resulting in chromosome missegregation and late mitotic arrest. liz1(+) encodes a 514-amino acid protein with strong similarity to a family of transmembrane transporters, and localizes to the plasma membrane of the cell. These results reveal an unexpected G2/M function of ribonucleotide reductase and establish that defects in a transmembrane protein can affect cell cycle progression.  相似文献   

19.
We identified 34 new ribosomal protein genes in the Schizosaccharomyces pombe database at the Sanger Centre coding for 30 different ribosomal proteins. All contain the Homol D-box in their promoter. We have shown that Homol D is, in this promoter type, the TATA-analogue. Many promoters contain the Homol E-box, which serves as a proximal activation sequence. Furthermore, comparative sequence analysis revealed a ribosomal protein gene encoding a protein which is the equivalent of the mammalian ribosomal protein L28. The budding yeast Saccharomyces cerevisiae has no L28 equivalent. Over the past 10 years we have isolated and characterized nine ribosomal protein (rp) genes from the fission yeast S.pombe . This endeavor yielded promoters which we have used to investigate the regulation of rp genes. Since eukaryotic ribosomal proteins are remarkably conserved and several rp genes of the budding yeast S.cerevisiae were sequenced in 1985, we probed DNA fragments encoding S.cerevisiae ribosomal proteins with genomic libraries of S.pombe . The deduced amino acid sequence of the different isolated rp genes of fission yeast share between 65 and 85% identical amino acids with their counterparts of budding yeast.  相似文献   

20.
A STE20/p65pak homolog was isolated from fission yeast by PCR. The pak1+ gene encodes a 72 kDa protein containing a putative p21-binding domain near its amino-terminus and a serine/threonine kinase domain near its carboxyl-terminus. The Pak1 protein autophosphorylates on serine residues and preferentially binds to activated Cdc42p both in vitro and in vivo. This binding is mediated through the p21 binding domain on Pak1p and the effector domain on Cdc42p. Overexpression of an inactive mutant form of pak1 gives rise to cells with markedly abnormal shape with mislocalized actin staining. Pak1 overexpression does not, however, suppress lethality associated with cdc42-null cells or the morphologic defeat caused by overexpression of mutant cdc42 alleles. Gene disruption of pak1+ establishes that, like cdc42+, pak1+ function is required for cell viability. In budding yeast, pak1+ expression restores mating function to STE20-null cells and, in fission yeast, overexpression of an inactive form of Pak inhibits mating. These results indicate that the Pak1 protein is likely to be an effector for Cdc42p or a related GTPase, and suggest that Pak1p is involved in the maintenance of cell polarity and in mating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号