首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mössbauer spectroscopy has been used to study the crystallization behaviour in paramagnetic bulk amorphous steels Fe50Cr14Mo14C14B6X2 (X = Y and Dy), prepared by arc-melting and Cu mould casting techniques. Room temperature Mössbauer spectra of as-cast samples exhibit a broadened and asymmetric doublet-like structure that indicates the paramagnetic and amorphous nature of the as-cast alloys. During heat-treatment alloys crystallized into γ-Fe and η-Fe3Mo3C iron phases and crystallization completed at 1123 K. Alloy containing Dy shows better performance against crystallization at low temperature as compared to the Y-containing alloy.  相似文献   

2.
Ternary Fe86NixMn14−x alloys, where x = 0, 2, 4, 6, 8, 10, 12, 14, 16 at.%, were prepared by the mechanical alloying (MA) of elemental powders in a high-energy planetary ball mill. X-ray diffraction analysis and Mössbauer spectroscopy were used to investigate the structure and phase composition of samples. Thermo-magnetic measurements were used to study the phase transformation temperatures. The MA results in the formation of bcc α-Fe and fcc γ-Fe based solid solutions, the hcp phase was not observed after MA. As-milled alloys were annealed with further cooling to ambient or liquid nitrogen temperatures. A significant decrease in martensitic points for the MA alloys was observed that was attributed to the nanocrystalline structure formation.  相似文献   

3.
In order to improve the cycle stability of the La–Mg–Ni system PuNi3-type hydrogen storage electrode alloys, Ni in the alloy was partially substituted by Fe. The La0.7Mg0.3Co0.45Ni2.55−xFex (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys were prepared by casting and rapid quenching. The effects of the substitution of Fe for Ni on the structures and electrochemical performances of the as-cast and quenched alloys were investigated in detail. The results of the electrochemical measurement indicate that the substitution of Fe for Ni obviously decreases the discharge capacity, high rate discharge capability (HRD) and discharge potential of the as-cast and quenched alloys, but it significantly improves their cycle stabilities, and its positive impact on the cycle life of as-quenched alloy is much more significant than on that of the as-cast one. The microstructure of the alloys analyzed by XRD, SEM and TEM show that the as-cast and quenched alloys have a multiphase structure which is composed of two major phases (La, Mg)Ni3 and LaNi5 as well as a residual phase LaNi2. The substitution of Fe for Ni helps the formation of a like amorphous structure in the as-quenched alloy. With the increase of Fe content, the grain sizes of the as-quenched alloys significantly reduce, and the lattice constants and cell volumes of the alloys obviously increase.  相似文献   

4.
We studied the influence of point defects (Fe) and precipitates (Ti3Ni4) on the characteristics of R-phase martensitic transformation by comparing the transport and thermal properties of as-quenched Ti50Ni46Fe4 and annealed Ti48.7Ni51.3 shape memory alloys. Both alloys undergo a weak first-order R-phase transformation with a small thermal hysteresis (less than 7 K) and non-zero transformation strain, suggesting the introduction of point defects and precipitates lead to a stable R-phase in these alloys due to the defects induced local lattice deformations. Furthermore, our study revealed that the transition temperature, transformation width, and transformation strain of the investigated R-phase TiNi-based alloys are strongly affected by the induced defects. As a result, the annealed Ti48.7Ni51.3 has a higher transition temperature than that of Ti50Ni46Fe4, as expected.  相似文献   

5.
Bcc Ti24.5V59.3Fe16.2 alloys containing 10 and 30% of C14 Laves phase inclusions were prepared by induction melting followed by annealing at 1000 °C. X-ray powder diffraction and BSE microscopy confirmed the presence of the C14 Laves phase (average composition Ti35.4V32.3Fe32.3) embedded in the bcc matrix. The two end members of the series, the C14 Laves phase and the bcc Ti24.5V59.3Fe16.2 alloy, have very different hydrogenation behaviors. The C14 Laves phase does not absorb as much hydrogen as does the bcc phase. No equilibrium plateau and little hysteresis between absorption and desorption were observed at 25 °C for the C14 Laves on the PCI curves whereas those of the bcc sample present one equilibrium plateau and significant hysteresis between absorption and desorption. As a result, the absorption capacity and the length of the equilibrium plateau of the multiphase alloys decrease with the C14 Laves phase content. The hydrogenation properties of an as-cast bcc Ti24.5V59.3Fe16.2 sample were also investigated: the kinetics of the first hydrogenation is found to be slower and the plateau pressures higher for the as-cast alloy than for the annealed sample.  相似文献   

6.
Three different NiTi-based alloys, whose nominal compositions were Ni50Ti50, Ni49Ti49Fe2, Ni45Ti51.8Fe3.2 (mole fraction, %), respectively, were used in the current research to understand the influence of Fe addition on phase transformation behavior in NiTi shape memory alloy (SMA). The microstructure and phase transformation behavior of the alloys were investigated by optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis. The results show that the matrix of the Ni50Ti50 alloy consists of both B19′ (martensite) phase and B2 (austenite) phase. Moreover, the substructures of twins could be observed in the B19′ phase. However, the ternary alloys of NiTiFe exhibit B2 phase in the microstructures. Such microstructures were also characterized by large presence of Ti2Ni precipitates dispersed homogenously in the matrix of the two kinds of alloys. The addition of Fe to the NiTi SMA results in the decrease in phase transformation temperatures in the ternary alloys. Based on mechanism analysis, it can be concluded that this phenomenon is primarily attributed to atom relaxation of the distorted lattice induced by Ni-antisite defects and Fe substitutions during phase transformation, which enables stabilization of B2 phase during phase transformation.  相似文献   

7.
Amorphous Fe–B alloys can be prepared at room temperature by reduction with borohydride of iron-oxide particles in suspension. By varying the borohydride concentration, amorphous Fe–B alloys with boron contents between 2 and 13 at.% have been produced by reduction of synthetic (nano-sized particles) and natural (micro-sized) hematite (α-Fe2O3) using sodium borohydride (NaBH4). The results presented in this paper were obtained from a systematic study of the effect of borohydride concentration on the resulting reaction products using a variety of experimental techniques, such as X-ray diffraction, wet chemical analyses, thermal analyses, scanning electron microscopy, transmission Mössbauer spectroscopy (TMS) and integral low-energy electron Mössbauer spectroscopy (ILEEMS). Three distinct NaBH4 concentrations have been applied. Beside unreacted hematite, amorphous Fe1−xBx alloys have been identified from the TMS spectra recorded at various temperatures between 15 K and room temperature. The amount of Fe1−xBx increases strongly with increasing NaBH4 concentration, and for a given concentration with increasing specific surface area (SSA). Thermal analyses have suggested that for any given reduction condition, the boron content x in the formed amorphous alloy has a bimodal distribution. This is found to be consistent with the finding that the contribution of the Fe1−xBx phase to the total Mössbauer spectra consists of a superposition of a broad sextet and doublet. ILEEMS has further revealed that especially the surface layers of the hematite grains are affected by the reduction processes.  相似文献   

8.
The structural, electronic and magnetic behavior of the as-cast and annealed Mn52Al46Ti2 and Mn50Al46Ti4 alloys have been studied through electronic band structure calculations, X-ray diffraction and magnetic measurements in the temperature range 4–850 K and magnetic field up to 7 T. Band structure calculations show a preference for Ti atoms to occupy the Mn sites in the plane of Al atoms with their magnetic moments (−0.68 μB/Ti) coupled antiparallel relative to the Mn magnetic moments in the plane of Mn atoms (2.33 μB/Mn). The as-cast and annealed samples were phase mixtures with different values of the hard ferromagnetic τ phase content. Except the as-cast and annealed at 1050 °C Mn52Al46Ti2 alloys, all the analyzed samples include, along with the τ and γ2 phases, a soft κ phase (CsCl - structure type) with TC around 530 K. The best magnetic characteristics were obtained for Mn52Al46Ti2 alloy annealed at 470 °C for 6 h: MS = 116 A m2/Kg at 4 K and TC = 668 K, in good agreement with the values reported in the literature for the τ phase of the MnAl system. The effects of the composition and of the preparation route on the electronic and magnetic properties are discussed in comparison with the properties of Mn54Al46 parent alloy.  相似文献   

9.
To elucidate the effects of Fe on the Ti–V-based hydrogen storage electrode alloys, the Ti0.8Zr0.2V2.7−xMn0.5Cr0.8Ni1.0Fex (x = 0.0–0.5) alloys were prepared and their structures and electrochemical properties were systematically investigated. XRD results show that all the alloys consist of a C14 Laves phase with hexagonal structure and a V-based solid solution phase with bcc structure. With increasing Fe content, the abundance of the C14 Laves phase gradually decreases from 43.4 wt% (x = 0.0) to 28.5 wt% (x = 0.5), on the contrary, that of the V-based solid solution phase monotonously increases from 56.6 wt% to 71.5 wt%. In addition, SEM observation finds that the grain size of the V-based solid solution phase is first gradually reduced and then enlarged with increasing x. Electrochemical investigations indicate that the substitution of Fe for V markedly improves the cycling stability and the high rate dischargeability of the alloy electrodes, but decreases the maximum discharge capacity and the activation performance. Further electrochemical impedance spectra, the linear polarization curve and the potentiostatic step discharge measurements reveal that the electrochemical kinetics of the alloy electrodes should be jointly controlled by the charge-transfer reaction rate on the alloy surface and the hydrogen diffusion rate in the bulk of the alloys. For the alloy electrodes with the lower Fe content (x = 0.0–0.2), the hydrogen diffusion in the bulk of the alloys should be the rate-determining step of its discharge process, and while x increases from 0.3 to 0.5, the charge-transfer reaction on the alloy surface becomes to the rate-determining step, which induces that the electrochemical kinetics of the alloy electrodes is firstly improved and then decreased with increasing Fe content.  相似文献   

10.
The effect of Ti addition on the microstructure, martensitic transformation, magnetic and mechanical properties of polycrystalline Ni51Fe22?x Ga27Ti x (x=0, 2 and 4) ferromagnetic shape memory alloy was investigated by scanning electron microscope, differential scanning calorimetry and X-ray diffraction. The results showed that the martensitic transformation temperature increases monotonously with the increase of fraction of Ti substitution for Fe. The increase in the martensite transformation temperatures should be related to the change of the electron concentration after the addition of Ti to Ni51Fe22?x Ga27Ti x alloys. According to the results of X-ray diffraction and magnetic properties, Ti has significant effect the structure of Ni51Fe22-x Ga27Ti x . Adding of 4 at% Ti altered the structure of the matrix from five-layered tetragonal martensite of Ni51Fe22Ga27 and Ni51Fe20Ga27Ti2 alloys to non-modulated tetragonal martensite. Magnetic properties proved that the alloy transits from ferromagnetic, five-layered tetragonal martensite, to paramagnetic, non-modulated martensite structure, with increasing Ti content to 4 at.%. Saturation magnetization, remnant magnetization and coercivity of the alloy were significantly influenced by Ti additions. Hardness values of Ni51Fe22Ga27 increased by the addition of Ti.  相似文献   

11.
The Ni1+xTixFe2−2xO4 (0 ≤ x ≤ 0.1) ferrite systems prepared by a semi-chemical route, have been studied by electron paramagnetic resonance (EPR) at X-band, Mössbauer spectroscopy and magnetization measurements at various temperatures. EPR spectra of these samples comprise generally a broad and asymmetric EPR signal. The variation of geff and peak-to-peak line width ΔHpp, with Ti concentration and temperature are attributed to the variation of dipole–dipole interaction and the superexchange interaction. Mössbauer spectra comprise two sets of sextet attributed to Fe3+ at two distinct sites-A and -B. Ti4+ ions are concluded to occupy the octahedral B-sites. Magnetic moment is found to decrease with the increase of Ti4+ concentration. The effective magnetic field Heff at the A-sites also follows a similar trend. The reason is attributed to the canted structure of spins in the Ti-doped samples. An anomalous behavior at x = 0.015 is observed in the properties studied here and some sort of phase change is believed to occur at 473 K in these ferrites.  相似文献   

12.
《Intermetallics》2006,14(3):255-259
High-strength nonequilibrium hypereutectic bulk alloys were obtained recently in the Ti–Fe and Ti–Fe–Co systems by arc-melting. Following these results, the influences of the additional alloying elements (V, Ni, Cu, Sn, B) on high strength hypereutectic Ti–Fe–Co bulk alloys are studied and analyzed in the present work. The structure of the hypereutectic quaternary Ti67Fe14Co14Sn5, Ti67Fe14Co14V5, Ti70Fe17Co7Cu6, Ti70Fe17Co7Ni6, and Ti69.4Fe14.8Co14.8B1 alloys obtained in the form of arc-melted ingots of about 20–30 mm diameter and 10–15 mm height was studied by X-ray diffractometry and scanning electron microscopy. The mechanical properties were tested by an Instron-type machine. Ti67Fe14Co14Sn5 alloy exhibits a high ultimate compressive strength of 1830 MPa and a large plastic strain of 24% which exceeds the ductility values obtained for Ti–Fe and Ti–Fe–Co alloys. The addition of Sn causes formation of a relatively rough eutectic structure which is preferable for the high strength hypereutectic alloys. Rough primary dendrites and eutectic rods of the cP2 intermetallic phase act as efficient barriers for shear strain and cracks propagation while fine eutectic rods of submicron size are quite effortlessly cut by deformation bands and cracks.  相似文献   

13.
A single phase amorphous Fe52Nb48 alloy has been synthesized through a solid state interdiffusion of pure polycrystalline Fe and Nb powders at room temperature, using a high-energy ball-milling technique. The mechanisms of metallic glass formation and competing crystallization processes in the mechanically deformed composite powders have been investigated by means of X-ray diffraction, Mössbauer spectroscopy, differential thermal analysis, scanning electron microscopy and transmission electron microscopy. The numerous intimate layered composite particles of the diffusion couples that formed during the first and intermediate stages of milling time (0–56 ks), are intermixed to form amorphous phase(s) upon heating to about 625 K by so-called thermally assisted solid state amorphization, TASSA. The amorphization heat of formation for binary system via the TASSA, ΔHa, was measured directly as a function of the milling time. Comparable with the TASSA, homogeneous amorphous alloys were fabricated directly without heating the composite multilayered particles upon milling these particles for longer milling time (86 ks–144 ks). The amorphization reaction here is attributed to the mechanical driven solid state amorphization. This single amorphous phase transforms into an order phase (μ phase) upon heating at 1088 K (crystallization temperature, Tx) with enthalpy change of crystallization, ΔHx, of −8.3 kJ mol−1.  相似文献   

14.
The effects of partial substitution of Fe element for Ni element on the structure, martensitic transformation and mechanical properties of Ni50–xFexMn38Sn12 (x=0 and 3%, molar fraction) ferromagnetic shape memory alloys were investigated. Experimental results indicate that by substitution of Fe for Ni, the microstructure and crystal structure of the alloys change at room temperature. Compared with Ni50Mn38Sn12 alloy, the martensitic transformation starting temperature of Ni47Fe3Mn38Sn12 alloy is decreased by 32.5 K. It is also found that martensitic transformation occurs over a broad temperature window from 288.9 to 352.2 K. It is found that the mechanical properties of Ni–Mn–Sn alloy can be significantly improved by Fe addition. The Ni47Fe3Mn38Sn12 alloy achieves a maximum compressive strength of 855 MPa with a fracture strain of 11%. Moreover, the mechanism of the mechanical property improvement is clarified. Fe doping changes the fracture type from intergranular fracture of Ni50Mn38Sn12 alloy to transgranular cleavage fracture of Ni47Fe3Mn38Sn12 alloys.  相似文献   

15.
This study investigated the crystallization behavior of a kinetically metastable Al80Fe10Ti5Ni5 amorphous phase. The Al80Fe10Ti5Ni5 amorphous phase was synthesized via the mechanical alloying of elemental powders of Al, Fe, Ti, and Ni. The microstructures and crystallization kinetics of the as-milled and annealed powders were characterized using X-ray diffraction, transition electron microscopy, and non-isothermal differential thermal analysis techniques. The results demonstrated that an Al80Fe10Ti5Ni5 amorphous phase was obtained after 40 h of ball milling. The produced amorphous phase exhibited one-stage crystallization on heating, i.e., the amorphous phase transforms into nanocrystalline Al13(Fe,Ni)4 (40 nm) and Al3Ti (10 nm) intermetallic phases. The activation energy for the crystallization of the alloy evaluated from the Kissinger equation was approximately 538±5 kJ/mol using the peak temperature of the exothermic reaction. The Avrami exponent or reaction order n indicates that the nucleation rate decreases with time and the crystallization is governed by a three-dimensional diffusion-controlled growth. These results provide new opportunities for structure control through innovative alloy design and processing techniques.  相似文献   

16.
The SmCo5/α-Fe nanocomposite powders were prepared by high energy ball milling and the inter-diffusion reaction between the SmCo5 and α-Fe magnetic phases were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and 57Fe Mössbauer spectroscopy. While structural and magnetic measurements could reveal only the presence of SmCo5 and α-Fe phases, Mössbauer studies could clearly specify the extent of alloying between Fe and Co atoms in terms of evolution of α-Fe(Co) phase as a function of milling time. It has been found that the fractional volume of α-Fe(Co) solid solution tends to increase at the expense of the initial α-Fe phase upon progressive milling.  相似文献   

17.
The La-Mg–Ni–based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure and electrochemical performance of the as-cast and annealed alloys were investigated. It was found that the experimental alloys consist of two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure, as well as some residual phase LaNi3 and NdNi5. The discharge capacity and high rate discharge ability (HRD) of the as-cast and annealed alloys first increase and then decrease with Nd content growing. The as-cast and annealed alloys (x=0.3) yield the largest discharge capacities of 380.3 and 384.3 mA·h/g, respectively. The electrochemical cycle stability of the as-cast and annealed alloys markedly grows with Nd content rising. As the Nd content increase from 0 to 0.4. The capacity retaining rate (S100) at the 100th charging and discharging cycle increases from 64.98% to 85.17% for the as-cast alloy, and from 76.60% to 96.84% for the as-annealed alloy.  相似文献   

18.
Creep experiments were conducted on Fe3Al-based alloys with vanadium and carbon additions in the temperature range from 923 to 1023 K, corresponding to the occurrence of B2 lattice. The alloys contained (in atomic %) (i) 27.0 Al, 1.17 V, and 0.02 C and (ii) 27.0 Al, 1.13 V, and 0.73 C (Fe balance). The alloys were tested in the as-cast state and annealed at 1273 K for 50 h. Creep tests were performed in uniaxial compression at a constant load with stepwise loading. Stress exponents and activation energies for the creep rate were determined. The values of the stress exponent in low-carbon alloy correspond to a five-power-law creep. The activation energy is greater than the activation enthalpy of diffusion of both Fe and Al in Fe3Al and is substantially greater than the activation enthalpy of diffusion of V in Fe3Al. The creep rate is impeded in the high-carbon alloy by the presence of tiny carbide particles. Consequently, the creep resistance of the high-carbon alloy in the as-cast state is greater, especially for higher temperatures and lower stresses. The carbide particles coarsen during annealing at 1273 K and are unable to obstruct dislocation motion because the mean distance between them is too large. The high-carbon alloy is then creep-weaker due to the reduced amount of vanadium present in the matrix.  相似文献   

19.
In order to improve the electrochemical cycle stability of the La–Mg–Ni system A2B7-type electrode alloys, La in the alloy was partially substituted by Zr and the melt-spinning technology was used for preparing La0.75−xZrxMg0.25Ni3.2Co0.2Al0.1 (x = 0, 0.05, 0.1, 0.15, 0.2) electrode alloys. The microstructures and electrochemical performances of the as-cast and quenched alloys were investigated in detail. The results obtained by XRD, SEM and TEM showed that the as-cast and quenched alloys have a multiphase structure which is composed of two main phases (La, Mg)Ni3 and LaNi5 as well as a residual phase LaNi2. The substitution of Zr for La leads to an obvious increase of the LaNi5 phase in the alloys, and it also helps the formation of a like amorphous structure in the as-quenched alloy. The results of the electrochemical measurement indicated that the substitution of Zr for La obviously decreased the discharge capacity of the as-cast and quenched alloys, but it significantly improved their cycle stability. The discharge capacity of the alloys (x ≤ 0.1) first increased and then decreased with the variety of the quenching rate. The cycle stability of the alloys monotonously rose with increasing quenching rate.  相似文献   

20.
In NiTi shape memory alloys, both the annihilation of dislocations and the formation of Ni4Ti3 precipitates may occur during post-deformation annealing. Different responses of the R-phase transformation temperatures to the annealing conditions have been reported. In order to find out the main factor(s) affecting the R-phase transformation temperatures during post-deformation annealing, a Ti-49.8 at% Ni and a Ti-50.8 at% Ni alloy were subjected to various post-deformation annealing and thermal cycling treatments. The results show that the R-phase transformation temperatures are very stable in the Ti-49.8 at% Ni alloy, while a significant variation is observed in the Ti-50.8 at% Ni alloy with respect to the annealing and thermal cycling conditions. These findings suggest that the R-phase transformation temperatures are not susceptible to the change of dislocation density and depends mainly on the Ni concentration of the matrix, which can be modified by the formation of Ni4Ti3 precipitates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号