共查询到19条相似文献,搜索用时 93 毫秒
1.
基于核方法的一种新的模糊支持向量机 总被引:1,自引:1,他引:1
由于支持向量机对样本中的噪声及孤立点非常敏感,因而在解决非线性、高维数、不确定问题时,使用模糊支持向量机比使用支持向量机的效果要好。在模糊支持向量机中,模糊隶属度函数的建立是关键也是难点。一般,模糊隶属度是在原始空间中根据样本点的相互距离及到类中心的距离创建的。考虑样本间的密切度,在特征空间中利用混合核函数建立一种新的模糊隶属度。通过试验比较多项式核函数、高斯径向基核函数与混合核函数,可看出新方法表现出了它的优越性。 相似文献
2.
3.
一种基于Morlet小波核的约简支持向量机 总被引:7,自引:0,他引:7
针对支持向量机(SVM)的训练数据量仅局限于较小样本集的问题,结合Morlet小波核函数,提出了一种基于Morlet小波核的约倚支持向量机(MWRSVM—DC).算法的核心是通过密度聚类寻找聚类中每个簇的边缘点作为约倚集合,并利用该约倚集合寻找支持向量.实验表明,利用小波核,该算法不仅提高了分类的准确率,而且提高了整体分类效率. 相似文献
4.
一种基于支持向量机的入侵检测模型 总被引:2,自引:1,他引:2
支持向量机(support vector machines)是一种建立在统计学习理论基础之上的机器学习方法。基于支持向量机在处理小样本、高维数及泛化能力强等方面的优势,该文提出了一种根据结构风险最小化原则基于支持向量机的入侵检测系统,首先简单介绍了入侵检测系统近来的发展状况和支持向量机的分类算法,然后给出以支持向量机分类算法为基础的入侵检测模型,以系统调用执行迹进行仿真实验,详细讨论了该模型的工作过程及核函数参数的选取对检测性能的影响。实验表明,该模型在先验知识较小的情况下,能够较好的检测出异常的入侵调用。 相似文献
5.
为了解决传统支持向量机对噪声或野值敏感的问题,模糊支持向量机给出一种解决办法,就是区别对待训练样本,为每一个数据点分配不同的权重,使其在分类模型训练过程中起不同的作用.以期获取更加合理的分类超平面,使得分类模型具有更好的泛化能力.Vague隶属度的计算是该算法实现的关键步骤之一,文中给出一种基于模糊C-均值聚类方法的Vague隶属度计算的方法,可以生成训练样本的真、假隶属度.实验结果表明,该算法具有更好的抗噪性能及分类能力. 相似文献
6.
基于核函数的支持向量机样本选取算法 总被引:2,自引:0,他引:2
使用支持向量机求解大规模数据分类需要较大内存来存储Hessian矩阵,而矩阵的大小则依赖于样本数1,因此在一定程度上导致支持向量机分类效率及质量难以提高.考虑到只有成为支持向量的样本才对决策函数起作用,为了减少训练样本时所需空间及时间开销,提高支持向量机分类效率与质量,提出了一种基于核函数的样本选取算法.该算法通过选取最大可能成为支持向量的样本,以达到减少训练时存储Hessian矩阵所需空间及时间开销的目的.实验结果表明,该算法所筛选出的样本不仅可以提高样本训练准确率,而且可以提高分类计算速度和减少存储空间开销. 相似文献
7.
一种改进的支持向量机NN-SVM 总被引:39,自引:0,他引:39
支持向量机(SVM)是一种较新的机器学习方法,它利用靠近边界的少数向量构造一个最优分类超平面。在训练分类器时,SVM的着眼点在于两类的交界部分,那些混杂在另一类中的点往往无助于提高分类器的性能,反而会大大增加训练器的计算负担,同时它们的存在还可能造成过学习,使泛化能力减弱.为了改善支持向量机的泛化能力,该文在其基础上提出了一种改进的SVM—NN-SVM:它先对训练集进行修剪,根据每个样本与其最近邻类标的异同决定其取舍,然后再用SVM训练得到分类器.实验表明,NN-SVM相比SVM在分类正确率、分类速度以及适用的样本规模上都表现出了一定的优越性. 相似文献
8.
一种基于支持向量机决策树多类分类器 总被引:3,自引:0,他引:3
提出一种基于支持向量机决策树的多类分类器SVMDT(Support Vector Machines based Decision Tree)。训练时,SVMDT采用样本类间最小距离原则进行决策树分叉,综合考虑局部类簇,生成一棵平衡的分类二叉树。分类时,SVMDT采用最大距离原则匹配决策。SVMDT训练时采用的距离为等效距离,综合考虑特征空间中样本类的中心距离以及样本类自身的分布特点,使得训练过程中确定各个SVM的优先级别更加合理,由此生成的决策树将特征空间严格划分开,避免了拒识区域的出现。UCI样本数据集实验结果表明,和传统的1对多SVM分类器相比,SVMDT具有训练速度快、分类速度快,分类精度高的特点。 相似文献
9.
10.
11.
12.
大规模数据集上非线性支持向量机(support vector machine, SVM)的求解代价过高,然而对于线性SVM却存在高效求解算法.为了应用线性SVM高效求解算法求解非线性SVM,并保证非线性SVM的精确性,提出一种基于近似高斯核显式描述的大规模SVM求解方法.首先,定义近似高斯核并建立其与高斯核的关系,推导近似高斯核与高斯核的偏差上界.然后给出近似高斯核对应的再生核希尔伯特空间(reproducing kernel Hilbert space, RKHS)的显式描述,由此可精确刻画SVM解的结构,增强SVM方法的可解释性.最后显式地构造近似高斯核对应的特征映射,并将其作为线性SVM的输入,从而实现了用线性SVM算法高效求解大规模非线性SVM.实验结果表明,所提出的方法能提高非线性SVM的求解效率,并得到与标准非线性SVM相近的精确性. 相似文献
13.
14.
给出了一种基于多微商核函数(MDK)的结合高斯混合模型(GMM)和支持向量机(SVM)的方法,并应用于SVM文本无关话者确认。从GMM话者语音特征概率分布出发,用多阶微商描述GMM概率分布,将GMM和SVM结合的问题转化为用多阶微商建立SVM话者模型的问题。首先对说话人语音进行基于因子分析的参数域失配补偿,用GMM描述失配补偿后的话者语音特征的概率分布;然后对GMM求多阶微商;最后构建多微商核函数,建立多SVM话者模型。在NIST’01 2min-1min话者确认数据库上的实验表明,基于多微商核函数的SVM话者确认系统性能优于基于失配补偿的GMM系统,也比基于失配补偿的Fisher核函数SVM话者系统和基于失配补偿的Kullback-Leibler(KL)距离SVM话者系统有较大的提高。 相似文献
15.
16.
17.
基于核的支持向量机构造方法的研究 总被引:1,自引:0,他引:1
核函数的选择是构造支持向量机的关键。通过研究当前机器学习领域3类主要核函数及其主要性质,派生出其他相关函数,同时引入其他一些更精密的核函数应用于SVM构造。得出SVM用于非线性分类器构造时,核函数的选择原.则。并以实例分析了核函数方法的计算性和泛化性,扩展了核函数的应用领域,使得SVM的构造方法更加丰富。 相似文献
18.
为了更好地将区分式分类方法应用于说话者确认系统中,构建序列核支持向量机已成为说话人识别领域的研究热点与趋势.本文在研究可再生希尔伯特空间框架的基础之上构建出一个新的序列核来对语音序列间的相似性进行度量,并结合近年来提出针对支持向量机(SVM)跨信道子空间特征差异(ISV)所提出的归整技术(LFA,NAP,CSP),进一步优化序列核系统.在美国国家标准与技术研究所(NIST)2004年评测数据集的实验中,新序列核系统的识别率高于传统高斯混合模型(GMM)和基于广义线性区分性核(GLDS)的支持向量机. 相似文献
19.
油层水淹状况识别是油田开发中后期油田生产中急需解决的一个重要问题。在测井资料标准化等预处理的基础上,本文将B样条核应用于水淹层识别中,并取得了较好的识别效果。 相似文献