首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the weakly over-penalized symmetric interior penalty (WOPSIP) method has high intrinsic parallelism.  相似文献   

2.
We propose a method for redesigning adaptive observers for nonlinear systems. The redesign uses an adaptive law that is based on delayed observers. This increases the computational burden, but gives significantly better parameter identification and robustness properties. In particular, given that a special persistency of excitation condition is satisfied, we prove uniform global asymptotic stability and semi-global exponential stability of the origin of the state and parameter estimation error, and give explicit lower bounds on the convergence rate of both the state and parameter estimation error dynamics. For initial conditions with a known upper bound, we prove tunable exponential convergence rate. To illustrate the use of the proposed method, we apply it to estimate the unmeasured flow rate and the uncertain friction parameters in a model of a managed pressure drilling system. The simulation results clearly show the improved performance of the redesigned adaptive observer compared to a traditional design.  相似文献   

3.
Nonconforming finite element methods are sometimes considered as a variational crime and so we may regard its coupling with boundary element methods. In this paper, the symmetric coupling of nonconforming finite elements and boundary elements is established and a priori error estimates are shown. The coupling involves a further continuous layer on the interface in order to separate the nonconformity in the domain from its boundary data which are required to be continuous. Numerical examples prove the new scheme useful in practice. A posteriori error control and adaptive algorithms will be studied in the forthcoming Part II. Received: November 26, 1997; revised February 10, 1999  相似文献   

4.
In this paper, we analyze the convergence and optimality of a standard adaptive nonconforming linear element method for the Stokes problem. After establishing a special quasi-orthogonality property for both the velocity and the pressure in this saddle point problem, we introduce a new prolongation operator to carry through the discrete reliability analysis for the error estimator. We then use a specially defined interpolation operator to prove that, up to oscillation, the error can be bounded by the approximation error within a properly defined nonlinear approximate class. Finally, by introducing a new parameter-dependent error estimator, we prove the convergence and optimality estimates.  相似文献   

5.
We present a combined direct and indirect adaptive control scheme for adjusting an adaptive fuzzy controller, and adaptive fuzzy identification model parameters. First, using adaptive fuzzy building blocks, with a common set of parameters, we design and study an adaptive controller and an adaptive identification model that have been proposed for a general class of uncertain structure nonlinear dynamic systems. We then propose a hybrid adaptive (HA) law for adjusting the parameters. The HA law utilizes two types of errors in the adaptive system, the tracking error and the modeling error. Performance analysis using a Lyapunov synthesis approach proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence. Furthermore, this is achieved at negligible increased implementation cost or computational complexity. We prove a theorem that shows the properties of this hybrid adaptive fuzzy control system, i.e., bounds for the integral of the squared errors, and the conditions under which these errors converge asymptotically to zero are obtained. Finally, we apply the hybrid adaptive fuzzy controller to control a chaotic system, and the inverted pendulum system  相似文献   

6.
加权多模型自适应控制的稳定性   总被引:1,自引:0,他引:1  
张维存 《控制理论与应用》2012,29(12):1657-1660
加权多模型自适应控制的稳定性证明是一个未解决的问题.本文采用基于模型输出误差的递推加权算法,在模型输出误差可分的情况下,可以保证其收敛性;然后在加权收敛的前提下,借助虚拟等价系统的概念和方法证明了加权多模型自适应控制系统的稳定性和收敛性.本文的分析方法和结论不依赖于具体的局部控制策略和具体的权值算法,而只取决于它们的某些属性.  相似文献   

7.
Jeonghun J. Lee 《Calcolo》2017,54(2):587-607
We propose mixed finite element methods for the standard linear solid model in viscoelasticity and prove a priori error estimates. In our mixed formulation the governing equations of the problem become a symmetric hyperbolic system, so we can use standard techniques for a priori error estimates and time discretization. Numerical results illustrating our theoretical analysis are included.  相似文献   

8.
针对电缸直线运动位置误差进行了研究,提出了一种“最小二乘法线性拟合补偿、非线性自适应模糊比例-积分-微分(PID)非线性误差补偿”的复合模式误差补偿方法,重点分析了非线性误差的补偿,建立了电缸测试系统的数学模型并进行了仿真,验证了自适应模糊PID进行补偿的可靠性;结合实验进行了验证,证明了该方法具有很好的可行性,取得了理想的效果.  相似文献   

9.
针对一类单输入单输出(SISO)非仿射非线性系统控制方向未知时出现的控制器奇异问题,提出了一种间接自适应模糊控制方案.利用中值定理将非仿射系统转化为仿射系统,通过模糊逻辑系统逼近该仿射系统中的未知函数,并构造模糊控制器,同时利用Lyapunov稳定性定理设计自适应律,最终克服了控制器的奇异问题;在此基础上,通过构造观测器估计跟踪误差,设计输出反馈自适应模糊控制器,解决了状态不可测时系统控制器设计难题,采用Lyapunov稳定性定理证明控制器能使得跟踪误差收敛同时闭环系统所有信号均有界.仿真结果验证了所设计控制方案的可行性与有效性.  相似文献   

10.
A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method.  相似文献   

11.
Jun Cao 《Computers & Fluids》2005,34(8):991-1024
In this paper, we discuss how to improve the adaptive finite element simulation of compressible Navier-Stokes flow via a posteriori error estimate analysis. We use the moving space-time finite element method to globally discretize the time-dependent Navier-Stokes equations on a series of adapted meshes. The generalized compressible Stokes problem, which is the Stokes problem in its most generalized form, is presented and discussed. On the basis of the a posteriori error estimator for the generalized compressible Stokes problem, a numerical framework of a posteriori error estimation is established corresponding to the case of compressible Navier-Stokes equations. Guided by the a posteriori errors estimation, a combination of different mesh adaptive schemes involving simultaneous refinement/unrefinement and point-moving are applied to control the finite element mesh quality. Finally, a series of numerical experiments will be performed involving the compressible Stokes and Navier-Stokes flows around different aerodynamic shapes to prove the validity of our mesh adaptive algorithms.  相似文献   

12.
针对非线性离散时间系统,提出了一种用带死区的最小二乘算法去调节神经网参数的算法,同其他算法相比,这种算法具有非常高的收敛速度.对于这种自适应控制算法,证明了闭环系统的所有信号是有界的,跟踪误差收敛到以零为原点的球中.  相似文献   

13.
This paper deals with a posteriori error estimators for the non conforming Crouzeix-Raviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms.  相似文献   

14.
The paper is to introduce a new systematic method that can produce lower bounds for eigenvalues. The main idea is to use nonconforming finite element methods. The conclusion is that if local approximation properties of nonconforming finite element spaces are better than total errors (sums of global approximation errors and consistency errors) of nonconforming finite element methods, corresponding methods will produce lower bounds for eigenvalues. More precisely, under three conditions on continuity and approximation properties of nonconforming finite element spaces we analyze abstract error estimates of approximate eigenvalues and eigenfunctions. Subsequently, we propose one more condition and prove that it is sufficient to guarantee nonconforming finite element methods to produce lower bounds for eigenvalues of symmetric elliptic operators. We show that this condition hold for most low-order nonconforming finite elements in literature. In addition, this condition provides a guidance to modify known nonconforming elements in literature and to propose new nonconforming elements. In fact, we enrich locally the Crouzeix-Raviart element such that the new element satisfies the condition; we also propose a new nonconforming element for second order elliptic operators and prove that it will yield lower bounds for eigenvalues. Finally, we prove the saturation condition for most nonconforming elements.  相似文献   

15.
We consider the problem of adaptive error control in the finite element method including the error resulting from, inexact solution of the discrete equations. We prove a posteriori error estimates for a prototype elliptic model problem discretized by the finite element with a canomical multigrid algorithm. The proofs are based on a combination of so-called strong stability and, the orthogonality inherent in both the finite element method can the multigrid algorithm.  相似文献   

16.
In this paper, we consider the adaptive Eulerian–Lagrangian method (ELM) for linear convection–diffusion problems. Unlike classical a posteriori error estimations, we estimate the temporal error along the characteristics and derive a new a posteriori error bound for ELM semi-discretization. With the help of this proposed error bound, we are able to show the optimal convergence rate of ELM for solutions with minimal regularity. Furthermore, by combining this error bound with a standard residual-type estimator for the spatial error, we obtain a posteriori error estimators for a fully discrete scheme. We present numerical tests to demonstrate the efficiency and robustness of our adaptive algorithm.  相似文献   

17.
C. Carstensen 《Computing》1996,57(4):301-322
In this note we study a posteriori error estimates for a model problem in the symmetric coupling of boundary element and finite elements methods. Emphasis is on the use of the Poincaré-Steklov operator and its discretization which are analyzed in general for both a priori and a posteriori error estimates. Combining arguments from [6] and [9, 10] we refine the a posteriori error estimate obtained in [9, 10]. For quasi-uniform meshes on the boundary, we prove some inequality of a reverse type using techniques from [5] and [36]. This indicates efficiency of the new estimate as illustrated in a numerical example.  相似文献   

18.
A parallel-wire driven mechanism uses flexible wires instead of heavy rigid links. In this paper, we propose a robust point-to-point (PTP) position control method in the task-oriented coordinates for completely restrained parallel wire-driven robots, which are translational systems using the minimum number of wires under zero-gravity conditions. In the cases where parallel-wire driven robots are disassembled/assembled and used outdoors (also applied in space), actuator positions would be uncertain or contain some errors. The error of internal force among wires that results from such uncertainty of actuator positions deteriorates positioning performance. To overcome such a difficulty, adaptive compensation is employed for robust PD control against the error of internal force, in this paper. It is necessary for the adaptive compensation to separate the internal force term linearly into a regressor matrix and a parameter vector concerned with the errors of actuator positions. The internal force term, however, possesses the nonlinear characteristic concerned with the errors of actuator position. Noting the structure of the internal force term, this paper shows that measuring both the position of an end-effector and wire length in real time enables the linear separation. Not only does this robust PD control method ensure precise positioning using external sensors; it enhances the robustness for uncertainty of the Jacobian matrix, which results from the error of actuator installation. First, we explain the linearization of the internal force term. Next, the robust PD control for the parallel-wire driven system using the uncertain Jacobian matrix is proposed; then, we prove the motion convergence to desired points and discuss its robustness based on Lyapunov stability analysis. Finally, the usefulness of the proposed control method is demonstrated through experiments and simulations.  相似文献   

19.
In this paper the discontinuous Galerkin method in time for the coupling of conforming finite element and boundary element methods is established. We derive quasi-optimal a priori error estimates. Numerical examples prove the new scheme to be useful in practice. A posteriori error control and an adaptive algorithm are studied in Part II of this paper.  相似文献   

20.
那靖  郑昂  黄英博 《控制与决策》2022,37(9):2425-2432
针对传统反步控制器设计方法存在复杂度爆炸、参数收敛难、控制奇异、需全系统状态已知等问题,提出一种新的可保证参数收敛的未知系统动态辨识和非反步输出反馈自适应控制方法.首先,通过定义新的状态变量和系统等价变换,将严格反馈系统状态反馈控制转化为标准系统的输出反馈控制,进而设计包含高阶微分器的自适应单步控制器,避免反步递推设计的问题;然后,采用两个神经网络对系统集总未知动态进行估计,避免传统控制方法在未知控制增益在线估计过零引发的奇异问题;最后,构造一种新的自适应算法在线更新神经网络权值确保其收敛到真实值,进而实现对未知系统动态的精准辨识.基于Lyapunov定理的分析表明,跟踪误差和估计误差均可收敛到零点附近紧集.基于液压伺服系统模型的对比仿真验证了所提出方法的有效性和优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号