首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we investigate how multi-wall carbon nanotubes (MWCNTs) affect the in-plane shear mechanical behavior of glass fiber/epoxy composite. These multi-scale composites are fabricated using vacuum infusion: pristine MWCNT and amino-functionalized MWCNT are incorporated into epoxy resins at concentrations of both 0.1 and 0.3 wt.% and are subsequently evaluated. The MWCNT are mixed into the resins by mechanical stirring and sonication prior to resin infusion, and the MWCNT distribution in the cured laminate is then evaluated by performing a heat conduction assessment. Monotonic and cyclic quasi-static room temperature in-plane shear tests are performed following the ASTM D 4255 standard. The initial shear modulus, the deterioration of the shear modulus during plastic deformation and material hardening are evaluated. Incorporating MWCNT into the resins did not affect the parameters investigated under the imposed conditions.  相似文献   

2.
This paper presents an analytical model for in-plane shear behavior of unreinforced masonry (URM) walls retrofitted using fiber reinforced polymers (URM-FRP). The proposed model idealizes masonry, epoxy, and FRP in a URM-FRP as different layers with isotropic homogenous elastic materials. Then, using principles from the theory of elasticity, the governing differential equation of the system is formulated. A double Fourier sine series is used as a solution for the differential equations. A simple computer program was developed to combine the solution of the differential equations with material nonlinearity. The material nonlinearity was represented by step-by-step layer stiffness degradation; after each step the equations are resolved linearly. The proposed basic analytical model allows the fundamental investigation of in-plane shear behavior of URM-FRP. Finally, effects of epoxy and masonry ductility as well as allowable shear stresses and FRP axial rigidity on the shear strength of URM-FRP are examined. In addition, comparisons with three existing models are carried out.  相似文献   

3.
《Composites Part B》2007,38(5-6):712-719
Flat plate slab system is widely adopted by engineers as it provides many advantages . The system can reduce the height of the building, provide more flexible spatial planning due to no beams present, and further reduce the material cost. However, the main problem in practice is the brittle failure of flat plate slab under punching shear. In this paper, the punching shear behavior has been studied and an experimental work using carbon fiber reinforced polymer (CFRP) rods as shear reinforcement has been conducted in flat plate slab system.This exploratory research is to study the behavior of the flat plate slab with CFRP-rods reinforced in punching shear zone under constant gravity load and lateral displacements in a reversed cyclic manner. Three specimens of interior column-slab connection specimens were tested including one standard specimen without any shear reinforcement, the second one reinforced with CFRP-rods and the third one reinforced with stud rails as the reference to the second one. The slabs were 3000 mm long × 2800 mm wide × 150 mm deep, and were simply supported at four corners. Punching shear failure occurred for the standard specimens at a lateral drift-ratio, lateral drift divided by the length of vertical member, of approximately 5%. The specimen reinforced by CFRP-rods had significant flexural yielding and sustained deformations up to a drift ratio of approximately 9% without significant losses of strength, and punching shear was not observed in this specimen. The displacements increased up to 1.79 times larger than that of the standard specimen. And this specimen showed 42% superior ductile performance than the standard specimen and even the same capability with the stud-rail reinforced specimen. The results of the experiment indicate that CFRP-rods using in the flat slab has a better foreground.  相似文献   

4.
Shear properties of compression-molded discontinuous AS4 carbon fiber reinforced poly(ether ether ketone) composites are evaluated with Iosipescu tests. It is found that both shear modulus and shear strength strongly depend on the molding conditions. A comparison between shear behavior of the composites and composites morphology reveals that fusion of the composite pellets and fiber/matrix interfacial interaction on molecular scale are the two dominant factors which determine the processing dependent shear properties of the materials studied.  相似文献   

5.
The effect of fiber, matrix and interface properties on the in-plane shear response of carbon-fiber reinforced epoxy laminates was studied by means of a combination of experiments and numerical simulations. Two cross-ply laminates with the same epoxy matrix and different carbon fibers (high-strength and high-modulus) were tested in shear until failure according to ASTM standard D7078, and the progressive development of damage was assessed by optical microscopy in samples tested up to different strains. The composite behavior was also simulated through computational micromechanics, which was able to account for the effect of the constituent properties (fiber, matrix and interface) on the macroscopic shear response. The influence of matrix, fiber and interface properties on each region and on the overall composite behavior was assessed from the experimental results and the numerical simulations. After the initial elastic region, the shear behavior presented two different regions, the first one controlled by matrix yielding and the second one by the elastic deformation of the fibers. It was found that in-plane shear behavior of cross-ply laminates was controlled by the matrix yield strength and the interface strength and was independent of the fiber properties.  相似文献   

6.
7.
The environmental factors, such as humidity and temperature, can limit the applications of composites by deteriorating the mechanical properties over a period of time. Environmental factors play an important role during the manufacture step and during composite’s life cycle. The degradation of composites due to environmental effects is mainly caused by chemical and/or physical damages in the polymer matrix, loss of adhesion at the fiber/matrix interface, and/or reduction of fiber strength and stiffness. Composite’s degradation can be measure by shear tests because shear failure is a matrix dominated property. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites (laminates [0/0]s and [0/90]s) have been investigated. The interlaminar shear strength (ILSS) was measured by using the short beam shear test, and Iosipescu shear strength and modulus (G 12) have been determinated by using the Iosipescu test. Results for laminates [0/0]s and [0/90]s, after hygrothermal conditioning, exhibited a reduction of 21% and 18% on the interlaminar shear strenght, respectively, when compared to the unconditioned samples. Shear modulus follows the same trend. A reduction of 14.1 and 17.6% was found for [0/0]s and [0/90]s, respectively, when compared to the unconditioned samples. Microstructural observations of the fracture surfaces by optical and scanning electron microscopies showed typical damage mechanisms for laminates [0/0]s and [0/90]s.  相似文献   

8.
This work describes a truss-core structure made of hemp/epoxy biocomposite based on a topology with auxetic (negative Poisson’s ratio) characteristics. Epoxy-based composites with 25 wt.% of hemp yarns have been manufactured and characterized with tensile and flexural tests. Truss-core hexagonal chiral panels with the biocomposite core have been produced using a Resin Transfer Molding technique. The panels have been subjected to standard transverse shear tests, and their properties predicted with a Finite Element nonlinear modeling. The results show that the hexachiral biocomposite truss core exhibits specific shear modulus and strength significantly higher compared to the ones observed in previous demonstrators made of polymeric core.  相似文献   

9.
The purpose of this work is to compare tensile, compressive and interlaminar shear properties of different carbon reinforcement/polyamide composites obtained by interfacial polymerization and hot compression molding techniques. Two types of composite matrices were studied: polyamide 6 and polyamide 6/6, both reinforced by fabric and unidirectional carbon fibers. The effects of the fiber volume fraction and the matrix on mechanical properties were analyzed through tensile, interlaminar shear and compressive tests. In general, the results have shown a slight increase of the composite elastic modulus, tensile and compressive strength with the increase of carbon fiber content. The microscopic damage development within selected composites during the loading has been observed through optical and scanning electron microscope techniques and has shown that shear failure at the fiber/matrix interface has been mostly responsible for damage development, initiated at relatively low stress.  相似文献   

10.
碳纤维静、动态加载下拉伸力学性能的试验研究   总被引:3,自引:1,他引:2  
利用岛津试验机和自行研制的旋转盘式击拉伸试验装置,对T300和M40J两种碳纤维实施了应变速率范围为0.001-1300s^-1的静、动态拉伸试验,获得了两种材料在不同应变速率下的完整的应力变曲线。  相似文献   

11.
In order to control the interfacial adhesion between carbon fibers and thermoplastic resins, poly(methyl methacrylate) (PMMA) particles have been adsorbed on the carbon fiber surfaces using an electrophoresis process. The amount of PMMA particles adsorbed on the modified carbon fibers was varied using the electrophoresis technique performed in polymer colloids for a short time. Additionally, the interfacial shear strength between the modified carbon fiber and the resin was controlled by a modification of the present process. An improved interaction and a strengthened surface adhesion between the carbon fiber coated with particles and the PMMA resin were observed.  相似文献   

12.
《Composites》1985,16(3):220-224
Measurement of the shear stiffness and strength of fibre-reinforced composite materials has proved to be more difficult than that of other properties, and significant discrepancies in results have been reported in the literature. Two tests have been used recently, torsion and side-notched (Iosipescu), that appear to have some advantages. This paper gives the results of comparison tests run on AS4/3501-6 carbon fibre-reinforced epoxy composite. In general the results were found to agree quite well, with average initial modulus values differing by 1%, failure stress by 5% and failure strain by 31%.  相似文献   

13.
Zhang  Ce  Zhang  Guoli  Shi  XiaoPing  Wang  Xi 《Journal of Materials Science》2022,57(4):2388-2410
Journal of Materials Science - The interlaminar mechanical properties of composites are important parameters for the application of laminates, and many scholars have applied carbon nanotubes (CNTs)...  相似文献   

14.
Steel fibers are known to improve shear behavior. The Design Codes (Eurocode 2 (EC2), Spanish EHE-08, Model Code 2010 and RILEM approach) have developed formulas to calculate the fiber contribution to shear, mainly focused on standard FRCs, i.e. medium strength concretes with a low content of normal strength steel fibers. However, in real applications other combinations are possible, such as high or medium strength concretes with high strength steel fibers of different lengths and geometry. An experimental program consisting of 12 self-compacting fiber reinforced concrete (SCFRC) I-type beams was carried out. All the beams had the same geometry and fiber content (50 kg/m3), and they were made with two different concrete compressive strength values and five different types of steel fibers and were tested for shear. The main conclusions reached were that the type of fiber substantially affects shear behavior, even when the Design Code formulas indicate similar contributions. The combination of high strength concrete matrixes with low strength fibers does not seem to be efficient. Also, the use of high residual flexural tensile strength values (e.g. fR3 or fR4) does not appear to be the most accurate reference value to calculate the beam shear strength in these cases. The present Design Codes consider standard FRCs, but their formulas should be revised for concretes with fibers of different strengths, slenderness and geometry, since these properties substantially affect shear behavior.  相似文献   

15.
碳纤维增强聚醚醚酮(CF/PEEK)是一种高性能热塑性复合材料,在航空航天领域有着广阔的应用前景.由于PEEK具有温度和应变率相关的非线性行为,导致CF/PEEK复合材料在基体主导的面内剪切方向也有类似的力学行为.本文在不同的温度和应变率下对CF/PEEK复合材料试件进行了剪切实验,将应力-应变曲线分为线性与非线性部分...  相似文献   

16.
The electrical behavior of continuous carbon fiber epoxy-matrix composites in the through-thickness direction was studied by measuring the contact electrical resistivity (DC) of the interlaminar interface in the through-thickness direction. The contact resistivity was found to decrease with increasing curing pressure and to be higher for unidirectional than crossply composites. The lower the contact resistivity, the greater was the extent of direct contact between fibers of adjacent laminae. The activation energy for electrical conduction in the through-thickness direction was found to increase with increasing curing pressure and to be lower for unidirectional than crossply composites. The higher the activation energy, the greater was the residual interlaminar stress. Apparent negative electrical resistance was observed, quantified, and controlled through composite engineering. Its mechanism involves electrons traveling in the unexpected direction relative to the applied voltage gradient, due to backflow across a composite interface. The observation was made in the through-thickness direction of a continuous carbon fiber epoxy-matrix two-lamina composite, such that the fibers in the adjacent laminae were not in the same direction and that the curing pressure during composite fabrication was unusually high (1.4 MPa).  相似文献   

17.
建立了碳纤维复合材料T型接头数值模型,模拟了其在拉伸载荷下的损伤产生、扩展及失效过程,并对碳纤维复合材料T型接头试件进行了静态拉伸试验。结果表明,接头的初始损伤载荷为9.8~12.0 kN,损伤发生后接头的载荷值发生突降(降低约27%~38%),此时接头仍具有一定承载能力;试件完全脱胶载荷较初始损伤载荷略有降低(载荷范围为8.0~8.6 kN)。数值计算和试验结果吻合,结果均显示填料区是碳纤维复合材料T型接头最薄弱的部位,易发生破坏;填料区破坏后裂纹迅速向填料区周围的胶层扩展,导致胶层的剥离,这是导致碳纤维复合材料T型接头失效的最主要原因。  相似文献   

18.
Mechanical properties and failure modes of carbon fiber composite egg and pyramidal honeycombs cores under in plane compression were studied in the present paper. An interlocking method was developed for both kinds of three-dimensional honeycombs. Euler or core shear macro-buckling, face wrinkling, face inter-cell buckling, core member crushing and face sheet crushing were considered and theoretical relationships for predicting the failure load associated with each mode were presented. Failure mechanism maps were constructed to predict the failure of these composite sandwich panels subjected to in-plane compression. The response of the sandwich panels under axial compression was measured up to failure. The measured peak loads obtained in the experiments showed a good agreement with the analytical predictions. The finite element method was used to investigate the Euler buckling of sandwich beams made with two different honeycomb cores and the comparisons between two kinds of honeycomb cores were conducted.  相似文献   

19.
研究了碳纳米管纤维的微观结构和拉伸性能,并进一步分析了其与环氧树脂形成界面剪切强度及微观结构。采用单丝断裂试验测试了碳纳米管纤维/环氧树脂复合材料体系的界面剪切强度,结合单丝断裂过程中的偏光显微镜照片、复合材料的拉曼谱图和断口扫描电镜照片,研究了碳纳米管纤维/环氧树脂复合材料界面的微观结构。结果表明: 碳纳米管纤维/环氧树脂复合材料的界面剪切强度约为14 MPa;在碳纳米管纤维和环氧树脂形成界面的过程中,环氧树脂可以浸渍纤维,形成具有一定厚度的复合相,这种浸渍过程和界面相的形成都有利于碳纳米管纤维与基体之间的连接。  相似文献   

20.
The interfacial shear strength of carbon nanotube coated carbon fibers in epoxy was studied using the single-fiber composite fragmentation test. The carbon fibers were coated with carbon nanotubes (CNT) on the fiber surface using thermal chemical vapor deposition (CVD). The CVD process was adjusted to produce two CNT morphologies for the study: radially aligned and randomly oriented. The purpose of the CNT coating was to potentially produce a multifunctional structural composite. Results of the single-fiber fragmentation tests indicate an improvement in interfacial shear strength with the addition of a nanotube coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号