首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
带壳B炸药在钨珠撞击下冲击起爆的数值模拟   总被引:1,自引:0,他引:1  
基于L ee-T arver点火增长模型,对直径分别为9、14、18和25mm的钨珠撞击带钽壳B炸药的过程进行了数值模拟,计算出了引爆B炸药的阈值速度,计算值与试验值相符合。探讨了B炸药在钨珠撞击下的起爆机理,结果表明,随着钨珠尺寸的增大,引爆B炸药的钨珠撞击阈值速度呈指数规律减小;当钨珠以引爆阈值速度撞击炸药时,随着钨珠直径的增大,炸药发生爆轰的时间逐渐推后,爆轰增长速度逐渐变慢。从钨珠撞击引爆炸药的机制来说,炸药点火是压力波的峰值压力和持续时间共同作用的结果,峰值较低的压力波作用较长时间也可以引爆炸药。  相似文献   

2.
含ACP改性双基推进剂的燃烧转爆轰实验研究   总被引:2,自引:0,他引:2  
为研究快燃物ACP对改性双基推进剂燃烧转爆轰性能的影响,利用DDT管建立相应的测试系统,对推进剂在多孔装药条件下的燃烧转爆轰过程进行了实验研究.实验中采用电离探针和压电式压力传感器记录了燃烧与爆轰波阵面的位置一时间关系和压力波形图,利用实验结果计算并比较了波阵面的传播速度、爆轰形成点的位置以及药床不同位置的压力值.结果表明,快燃物ACP能够增大改性双基推进剂转爆轰的倾向,当ACP的质量分数从5%增加到7%时,装药燃烧转爆轰的倾向增大比较明显.  相似文献   

3.
为研究点起爆条件下TATB基炸药爆轰波传播特征,用双灵敏度激光速度干涉仪(VISAR)对TATB基炸药进行了大板实验研究,并用DYNA2D程序对实验进行了模拟计算.结果表明,大板实验中TATB基炸药爆轰波传播过程中的压力剖面具有"二维结构",且爆轰波传播方向由轴线方向逐渐向半径方向转变.实测铜飞片自由面的速度与计算值相吻合.  相似文献   

4.
为了分析爆轰波叠加作用下45~#钢杆的断裂行为,进行了爆轰波叠加效应试验。通过数值模拟分析了杆条受力分布及断裂过程,分析了起爆模式、起爆间距和装药高度对杆条断裂行为的影响,并通过试验对数值模拟结果进行了验证。结果表明,爆轰波叠加后产生一条狭窄的压力增强带,在试验靶板上造成深度为1mm的刻痕;起爆模式影响受力分布的均匀性,起爆点位于传爆药一端时,靠近起爆点一端的杆条所受压力峰值明显低于其他杆条;起爆点位于传爆药中心时,杆条受到爆轰波的作用时间更加集中,且压力大小接近;装药高度与起爆间距的比值在0.75~1.25之间时,爆轰波叠加后作用到杆条的压力随着装药高度或起爆间距的增加而增大。起爆间距对爆轰波叠加压力的影响比起爆点位置和装药高度的影响更明显。  相似文献   

5.
B炸药爆轰波拐角传播的三维数值模拟   总被引:1,自引:1,他引:1  
为研究B炸药起爆后爆轰波在拐角中的传播特性以及拐角爆轰低压流场现象,运用LS-DYNA3D程序对120°,90°,45°三种特定的拐角装药的爆轰波传播现象进行了数值模拟,观察了爆轰波通过拐角的传播过程,讨论了爆轰波波阵面通过拐角后爆速的变化情况.结果表明,爆轰波通过拐角后由于传播面积的变化而产生衰减-增长过程,装药拐角越大,爆轰波通过时越稳定;随着装药拐角的减小,拐角处的波阵面压力、爆速和传播能力都逐渐降低.  相似文献   

6.
为了研究爆轰产物作用下双层药型罩的射流形成过程,应用PER理论拓展建立了双层药型罩成型装药点起爆时射流形成的分析模型.为获得爆轰波与双层药型罩的相互作用关系,通过数值模拟方法,得到了Defourneaux经验常数与爆轰波入射角的关系,并推导了双层药型罩当量密度公式.将射流形成的分析模型结果与数值模拟结果进行对比,验证了分析模型的合理性.使用分析模型研究了双层药型罩结构参数对射流形成的影响规律,为双层药型罩的结构设计提供了理论依据.  相似文献   

7.
基于随机多层纤维过滤介质算法建立褶式滤芯三维拟态化结构模型,对褶式滤芯内部气-固两相流动进行数值模拟,计算不同运行参数及结构参数下滤芯的压力损失及过滤效率,并与文献计算值进行比较. 结果表明,压力损失随过滤风速增大呈线性增加;随褶尖角增大,压力损失呈先减小后增加,压力损失计算值与文献计算值吻合较好. 褶尖角和过滤风速一定时,过滤效率随粒径增加先减小后增大,在给出的颗粒直径范围内存在最易穿透颗粒直径(MPPS). 不同过滤风速下,当颗粒粒径小于0.5 mm时,扩散作用使过滤效率随过滤风速增加而减小;大于0.5 mm时,惯性作用使其随过滤风速增加而增加;MPPS随风速增加而减小;本计算值与文献计算值趋势一致. 不同褶尖角下,当颗粒粒径小于1 mm时,扩散作用使过滤效率随褶尖角增大而减小;大于1 mm时,惯性作用使其随褶尖角增大而增加.  相似文献   

8.
FOX-7和RDX基含铝炸药的冲击起爆特性   总被引:1,自引:0,他引:1  
为研究FOX-7和RDX基含铝炸药的冲击起爆特性,对其进行了冲击波感度试验和冲击起爆试验,结合冲击波在铝隔板中的衰减特性,确定了FOX-7和RDX基含铝炸药的临界隔板值和临界起爆压力,并通过锰铜压阻传感器记录了起爆至稳定爆轰过程压力历程的变化。结果表明,以Φ40mm×50mm的JH-14为主发装药时,FOX-7和RDX基含铝炸药临界隔板值分别为37.51和34.51mm,对应的临界起爆压力为10.91和11.94GPa;起爆压力为11.58GPa时,FOX-7炸药的到爆轰距离为25.49~30.46mm,稳定爆轰后的爆轰压力为27.68GPa,爆轰速度为8 063m/s;起爆压力为14.18GPa时,RDX基含铝炸药的到爆轰距离为17.27~23.53mm,稳定爆轰后的爆轰压力为17.16GPa,爆轰速度为6 261m/s。  相似文献   

9.
气液两相临界流动压力是气液两相输送系统中安全阀尺寸设计、孔口泄漏速率计算的关键参数,现有的临界流动压力计算方法主要是针对单组分流体建立的,对多组分混合物的适用性差。针对这一问题,基于现有的非平衡均相流动(HNE-DS)模型和适用于多组分混合物的Peng-Robinson状态方程,推导了新的非平衡压缩系数表达式;通过拟合实验数据,得到新的临界流动压力比和非平衡压缩系数关联式,建立了改进的HNE-DS模型。结果表明:对于单组分流体,改进HNE-DS模型计算的临界压力比与实验值之间的平均相对偏差为3.3%,较原模型减小了1.6%。对于多组分混合物,改进HNE-DS模型的计算值更接近实际情况。成果为准确计算多组分混合物的临界流动压力提供了依据。  相似文献   

10.
原油压缩系数实验与关联   总被引:2,自引:0,他引:2  
采用Ruska高压PVT装置,测定了9个油田油样的压缩系数,其温度与压力范围分别为308—338 K,0.6—6.6 MPa。并测得了各油样4个温度下的密度值。实验发现,原油压缩系数随温度的升高而增加,随压力的升高而降低。并建立了温度、压力和密度函数的原油压缩系数关联式,其对404个数据点的平均误差为2.96%。该式可用于预测不同条件下的原油压缩系数计算,方便原油输送的计量与管道的设计。  相似文献   

11.
因聚四氟乙烯(PTFE)具有较低的复介电常数,其作为透波材料而被广泛用作微波化学反应用容器。透波材料的介电特性和透波性能对微波化学反应的速率和效果具有重要影响。本研究首先利用谐振腔微扰法测量了PTFE在23~250℃范围内的复介电常数,并分析了该材料介电属性的温度特性;其次,基于电磁波传输原理,计算了该材料受到不同因素影响下的功率透过系数(T2),并对该材料的透波性能进行了分析。研究表明,随着温度的增加,PTFE的介电常数逐渐减小,损耗正切逐渐增大,但是二者变化幅度较小;在水平(TM)极化中存在一个布儒斯特角θB,当微波以该角度入射时会发生全透射现象;TM极化下的T2随着入射角的增大先增大后减小,垂直(TE)极化下的T2随着入射角的增加而减小,TM极化下的整体透波性能要优于TE极化;随着容器壁厚的增加,透波性能波动变化,存在极大值和极小值;在相同容器壁厚范围内(0~0.1m),2450MHz频率下对应高透波性能的厚度值要多于915MHz。研究还表明,微波入射角度较小时,PTFE的T2始终保持在0.87~0.99之间,透波性能较好。最后给出了微波以不同频率入射时PTFE的优选壁厚以供实际应用过程中进行参考。  相似文献   

12.
爆轰火焰在管道阻火器内的传播与淬熄特性   总被引:4,自引:1,他引:3       下载免费PDF全文
孙少辰  毕明树  刘刚  邓进军 《化工学报》2016,67(5):2176-2184
在水平封闭的直管中,采用自主研制的阻爆实验系统(包括传感器系统、配气系统、数据采集系统、点火系统等)对不同活性预混气体爆轰火焰在波纹管道阻火器内的传播与淬熄过程进行了实验研究。结果显示当可燃气体接近当量浓度时(丙烷4.2%、乙烯6.6%、氢气28.5%,均为体积分数),预混气体从点燃到火焰淬熄过程历时非常短,总体可分为4个阶段,缓慢燃烧阶段、快速燃烧阶段、加速燃烧阶段和超压振荡阶段。丙烷-空气、乙烯-空气预混气体在D=80 mm的管道阻火器中,爆炸压力峰值较高。当管道直径增加至400 mm时,爆炸压力峰值逐渐降低,其中乙烯-空气预混气体的爆炸压力峰值仅为3 MPa左右;氢气-空气预混气体的爆炸压力峰值随管径的增加呈递增趋势。对爆轰速度的研究结果表明,丙烷-空气、乙烯-空气预混气体爆轰速度数值相差不大,丙烷-空气预混气体甚至稍高些;而氢气-空气的爆轰速度数值较高。而且随着管径的增加,管壁热损失增大及其阻力因素等原因影响使预混气体爆轰速度趋向平稳。最后,从经典传热学理论出发,推导出了阻火单元厚度与爆轰火焰速度之间的关系。并结合实验数据,提出了爆轰安全阻火速度的计算方法,为工业装置阻火器的设计和选型提供更为准确的参考依据。  相似文献   

13.
依据光学原理,提出了爆轰波光谱发射率及爆温的虚拟辅助光源反射测量方法,克服了单波长或双波长光学测试装置不能同时测量两参量的困难,利用该方法对液体炸药NM爆轰波光谱发射率及其爆温进行了实验测量,结果与文献报道相吻合。  相似文献   

14.
为了研究连续爆轰发动机中的起爆、湮灭、再起爆和稳定全过程的流场演化机制,采用基于开源计算流体力学平台OpenFOAM的自定义求解器BYRFoam,使用带Laval尾喷管的空心圆筒燃烧室的几何构型及阵列式小孔进气。分析了起爆和湮灭的过程以及再起爆现象产生的原因,采用时空分布图的分析方法总结了起爆、湮灭、再起爆和稳定全过程的流场演化机制。结果表明,起爆初期的斜激波会在尾喷管收缩段反射形成反射激波,反射激波进入新鲜气体,形成与初始爆轰波方向相反的新爆轰波,这会导致爆轰波的湮灭。湮灭之后,燃烧室头部的高压强会阻碍新鲜气体的进入,之后已燃气体逐渐通过尾喷管排出燃烧室,燃烧室头部压强降低,逐渐进入燃烧室的新鲜气体为后续的再起爆创造了条件。连续爆轰波再起爆的原因有两个:一是尾喷管收缩段处的反射激波进入新鲜气体层并转化为爆轰波;二是已经形成的爆轰波与阵列式进气相互作用,形成反传波,反传波进入新鲜气体并转化为爆轰波。再起爆之后,经过爆轰波、激波和新鲜气体的相互作用和演化,爆轰波最终稳定传播。  相似文献   

15.
端口夹角是影响气波引射器性能的重要结构参数。本文通过数值模拟和实验研究探讨了端口夹角对气波引射器性能的影响机理,并得出了装置最佳端口夹角的预测方法。气波引射器存在一个最佳的端口夹角ψopt:当端口夹角大于该值时,等熵效率明显下降;若端口夹角小于最佳值,中压压力小于极值中压压力时,等熵效率随夹角的减小稍有降低,中压压力大于极值中压压力时,等熵效率急剧下降。数值模型的计算结果与实验值相一致,本文所建数值模型可准确预测最佳端口夹角。入口气体状态恒定时,最佳端口夹角不随中压压力的变化而改变,随转速的增大而线性增大。上述结论对气波引射器的设计和性能优化具有指导意义。  相似文献   

16.
利用分形理论和压汞实验中进汞量与进汞压力的双对数曲线,得出计算孔隙压缩系数的各种参数,最后求得构造煤的孔隙压缩系数βp随压力变化的数值;结果表明,构造煤的孔隙压缩系数随着煤样构造变形强度的增加而减小,即低的变形强度对应于高的压缩系数。  相似文献   

17.
碳氢燃料与卤素氟化物的爆炸反应特性   总被引:4,自引:2,他引:2  
在一维爆轰管中研究了碳氢燃料与卤素氟化物的爆炸反应特性。氧气含量大于9%时,实测管中爆轰波压力2.8MPa,温度2773K。燃料与空气以化学当量配比时,仅观察到爆燃现象。同时利用FTIR和GC/MS分析了无氧条件下的反应产物。  相似文献   

18.
压装高能炸药的燃烧转爆轰实验研究   总被引:2,自引:0,他引:2  
用电探针和压力传感器测定了质量分数为95%压装高能炸药(密度为1.86 g/cm~3)的燃烧转爆轰特性.研究了点火药量和约束条件对压装高能炸药燃烧转爆轰过程的影响.结果表明,压装高能炸药难以发生燃烧转爆轰,点火药药量从1.5 g增至3.0 g时,炸药的反应强度有所提高,但对燃烧转爆轰的影响较小.在强约束条件下,该压装炸药能基本实现燃烧转爆轰,爆轰诱导距离约为545 mm.  相似文献   

19.
此研究的主题是关于包含微小颗粒的镁铝合金(PAM)与高度分散的聚四氟乙烯的混合物烟火药的爆炸性质。该混合物显示出时机械冲击和热作用的很明显的钝感,但对明火和火花的极度的敏感。此混合物的燃烧速率随着密度的减少而增加,最小为1cm/s、最大为100m/s。当装药密度小于1 g/cm3时,混合物发生非常激烈的燃烧,现象甚至与爆轰类似。,当装药密度在1.1g/cm3以上时,混合物能够稳定燃烧。本论文主要就松装密度下的混合物以高速率燃烧时空气中产生的压力冲击进行了研究。该压力冲击不同于典型的冲击波,波阵面压力从爆炸中心点刘最大距离可持续50~100ms,而典型的冲击波在等量装药时一般小于1ms。合成物的起爆方式会影响压力冲击的形状和参数。已经有人提出了对于该合成物燃烧速率的巨大变化的合理解释,在该文献中所述的效果,均使用来自具有耐爆炸性的工业门和窗户的评价。  相似文献   

20.
镁粉爆炸特性的实验研究   总被引:1,自引:0,他引:1  
镁粉具有爆炸的危险性。采用20L球形爆炸实验装置,研究了镁粉爆炸过程中镁粉的浓度、镁粉粒径对最大爆炸压力、最大压力上升速率的影响;提出了预防镁粉爆炸、降低爆炸的安全措施。实验结果表明,随着镁粉浓度的增加,爆炸的危害性越大,当浓度增加到一定程度时,爆炸压力和压力上升速率达到最大值,此时浓度再增加,爆炸压力和压力上升速率将逐渐减小,爆炸的危害性减小;此外镁粉粒径越小,爆炸危害性越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号