首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
医学图像三维重建技术是利用二维医学图像序列重建出三维模型,为医生提供直观、全面、准确的病灶和正常组织信息,是当今医学影像领域研究的热点之一。利用一个包含了多种面绘制技术的基于面向对象方法设计的、功能强大的可视化类库Visuali zation ToolKit(VTK)进行人体肺部断层图像的三维重建,讨论了面绘制算法中最常用的移动立方体法(MC)。重建效果表明基于VTK的面绘制技术具有应用灵活、重建效果逼真、重建速度较快等优点。为进一步研究人体肺部的动态建模打下基础。  相似文献   

2.
医学图像三维重建在放疗规划、解剖教学、医学诊断等方面具有重要的作用。本文首先介绍了可视化工具包VTK,然后对三维重建算法进行了概述,并重点研究了面绘制方法中的移动立方体算法和体绘制方法中的光线投射算法,最后,在VC++6.0环境下,采用可视化工具包VTK分别实现了移动立方体算法和光线投射算法,取得的良好的三维重建效果,并将其应用到了计算机辅助医学诊断软件中。  相似文献   

3.
数字人体是目前的一个研究热点,而医学图像三维建模及可视化研究是其中的一项重要内容,医学序列图像的可视化技术包括体绘制和表面绘制两大类。他们各有其特点和适用领域。使用VTK可以很大程度的简化医学序列图像重建的问题。本文讨论了两种方法的原理、特点以及VTK实现三维重建及可视化的算法过程,并给出了一个实例。  相似文献   

4.
虚拟外科手术是医学领域的一个重要研究方向。基于面绘制和体绘制两种可视化算法实现医学图像的三维模型重建,针对不同重建模型分别实现虚拟任意切割:面切割和体切割,并讨论了虚拟切割的交互操作实现方法。用VTK(Visualization Toolkit)初步实现了模拟手术系统中的虚拟切割脊柱体功能。  相似文献   

5.
基于VTK的医学图像可视化三维重建   总被引:1,自引:0,他引:1  
医学三维数据场可视化是当前科学计算可视化应用的重点,具有重要的学术意义和应用价值.体绘制是该技术的一个主要的方法.在VTK(Visualization Toolkit)类库提供可视化与显示功能的基础上,主要讨论了光线投射算法进行体数据的绘制的特点,同时采用了包围盒技术改善了光线投射算法的绘制速度.实验结果表明,图像的质量在没有受到影响的前提下,图像的绘制速度得到了大幅度的提高,同时证明了VTK是医学三维数据场可视化的有力工具.  相似文献   

6.
医学影像立体显示技术利用二维医学图像序列重建出三维模型,为医生提供了直观、全面、准确的病灶和正常组织信息,给临床诊断和治疗带来了巨大进步,是当今医学领域研究的热点。三维重建有体绘制和面绘制两种方法,本文主要介绍了面绘制方法的原理和实现,选择基于体素的表面重建方法,利用国际上广泛应用的可视化工具包VTK提供的MC算法实现面绘制,并对轴、冠、矢三个方向的任意切面进行显示。  相似文献   

7.
基于VTK的医学图像重建与三维交互式方法的实现   总被引:1,自引:0,他引:1  
为实现医学图像的重建与三维空间的交互式操作,使用可视化工具包VTK进行医学图像的三维重建并实现交互操作。通过在个人PC机上进行实验,采用体绘制算法重建出了高质量的三维物体,顺利地实现了三维交互操作并描述了详细的步骤。结果表明基于VTK的三维重建并通过在三维空间中添加回调函数来完成操作事件的拦截与响应是可行的。  相似文献   

8.
VTK医学图像三维重建应用及实现   总被引:3,自引:0,他引:3  
VTK是开放源码的自由软件系统,可应用于图像处理、计算机图形学和科学计算可视化,在国内外被广泛用于各行各业.介绍了VTK的基本组成、系统架构、可视化流程.并且将VTK 应用于医学图像可视化,使用面绘制的移动立方体法和体绘制的光线投影法,在Microsoft Visual Studio 2005下使用C++语言分别实现了...  相似文献   

9.
医学图像的体绘制作为辅助诊疗的重要手段,成为近年来研究和应用的热点。文中讨论了光线投射法这一体绘制经典算法的实现过程,并实现了基于人体序列切片图像的肾脏体绘制,重建结果的保存和读取操作以及虚拟的立体裁切功能,使得对于重建结果的研究与繁杂的重建过程脱离开来,具有应用灵活、效果逼真等优点。  相似文献   

10.
医学图像的三维显示为医生提供了直观、全面、准确的病人病情信息,是当今医学影像领域研究的热点之一。VTK是开源的可视化工具包,在国际上得到广泛应用,具有优秀的架构和运行机制。通过对DICOM医学图像的研究,应用VTK技术,研究了医学图像横断面、冠状面、矢状面显示以及三维重建的方法,该方法对医学图像三维体绘制数据的研究具有一定的实用价值。  相似文献   

11.
Scientific visualization is an emerging computational technology that helps scientists and engineers to investigate physical systems through a process of geometric abstraction. Visualization is an interdisciplinary subject, drawing on numerical simulation, perceptual psychology, graphic arts, computer graphics, image processing, data management, parallel processing, distributed computing and various disciplinary specialities of science and engineering. Recent developments in the field are surveyed, with emphasis on the role of visualization in engineering mechanics. Visualization is described as a structured process of data preprocessing, geometric abstraction and image rendering. After a discussion of the role of human perception in visualization, various techniques for displaying scalar, vector, and higher-order tensor fields are presented. An application of visualization to elastodynamic fracture mechanics demonstrates the benefits of combining visualization with numerical simulation.  相似文献   

12.
Visualization is a method of representing large amounts of complex data in ways that are easier to understand, analyze, and support decision making. Large automotive manufacturers such as General Motors (GM) use visualization with great success. Visualization requires combinations of manual and automated data harvesting. Users must find and access the correct digital data based on a correct configuration of the product to be visualized. In addition, each type of visualization, from real-time design reviews to marketing-based image rendering, requires data to be prepared with appropriate materials, backgrounds, and lighting. Each of these processes requires a different set of expert users and their own optimized process to create specific visualizations or views of data. Making complicated data easier to understand has always been a challenge.  相似文献   

13.
Visualization of large vector line data is a core task in geographic and cartographic systems. Vector maps are often displayed at different cartographic generalization levels, traditionally by using several discrete levels-of-detail (LODs). This limits the generalization levels to a fixed and predefined set of LODs, and generally does not support smooth LOD transitions. However, fast GPUs and novel line rendering techniques can be exploited to integrate dynamic vector map LOD management into GPU-based algorithms for locally-adaptive line simplification and real-time rendering. We propose a new technique that interactively visualizes large line vector datasets at variable LODs. It is based on the Douglas-Peucker line simplification principle, generating an exhaustive set of line segments whose specific subsets represent the lines at any variable LOD. At run time, an appropriate and view-dependent error metric supports screen-space adaptive LOD levels and the display of the correct subset of line segments accordingly. Our implementation shows that we can simplify and display large line datasets interactively. We can successfully apply line style patterns, dynamic LOD selection lenses, and anti-aliasing techniques to our line rendering.  相似文献   

14.
基于GPU的三维医学图像混合可视化系统   总被引:3,自引:0,他引:3  
研究并实现了一个基于GPU的医学图像混合可视化系统,该系统采用三维纹理映射的方法实现直接体绘制,利用GPU的可编程特性完成体绘制方法中的插值后分类算法和传输函数的传递及实时修改,采用OpenGL技术实现表面的绘制,并基于场景图结构实现时表面数据的管理。面绘制和体绘制部分都采用OpenGL实现,运用OpenGL的融合机制,系统实现了面绘制和体绘制的混合显示。本系统大大提高了体绘制的速度,有效地保留了面绘制和体绘制的优势,在保证绘制速度的基础上丰富了图像信息。  相似文献   

15.
基于OpenGL的地质体三维可视化系统开发   总被引:1,自引:0,他引:1  
本文所采用的可视化方法思路来自VTK(Visualization Toolkit),基本思想是基于体元的绘制方法,先使用数学插值将空间任意离散的点生成规则的点数据,并对数据点划分成N多个小体元,然后以体元为基本单位进行地质体可视化,体元划分越多,绘制越精确。具体实现是在MFC基础上,配合使用VisualC 提供的AppWizard创建出应用程序框架,再基于该框架进行OpenGL程序开发。其具有精确度高和可扩展能力强等优点。  相似文献   

16.
医学体数据的可视化是科学计算可视化的重要研究领域,其处理过程包括体数据的获取、模型的建立、数据的映射、绘制等操作。论文对医学体数据可视化的相关技术进行了综述,讨论了医学体数据的结构模型和表示方法,全面地分析了医学体数据可视化中各种算法和技术的特点,及相关的加速技术,探讨了目前医学体数据可视化存在的问题及发展趋势。  相似文献   

17.
三维医学图象可视化技术综述   总被引:15,自引:0,他引:15       下载免费PDF全文
概要地分析和评述了近年来三维医学图象可视化技术的发展,并主要从三维医学图象的分割标注、多模态医学图象的数据整合、体数据的绘制等3个角度对三维医学图象的可视化技术进行了分类综述,同时介绍了各种算法的原理和最新进展,由于医学图象可视化的目的是辅助医学了解生物内部组织的信息,因此除图象绘制技术外,组织及组织特性的精确自动分割标注技术,以及将不同图象模态提供的互补信息综合起来的匹配/融合技术外,都是医学图象可视化需要解决的重要问题,其中,多模态图象的可视化在三维医学图象可视化领域中最具有挑战性和发展前景。  相似文献   

18.
This survey provides an overview of perceptually motivated techniques for the visualization of medical image data, including physics‐based lighting techniques as well as illustrative rendering that incorporate spatial depth and shape cues. Additionally, we discuss evaluations that were conducted in order to study the perceptual effects of these visualization techniques as compared to conventional techniques. These evaluations assessed depth and shape perception with depth judgment, orientation matching, and related tasks. This overview of existing techniques and their evaluation serves as a basis for defining the evaluation process of medical visualizations and to discuss a research agenda.  相似文献   

19.
Volume illustration can be used to provide insight into source data from CT/MRI scanners in much the same way as medical illustration depicts the important details of anatomical structures. As such, proven techniques used in medical illustration should be transferable to volume illustration, providing scientists with new tools to visualize their data. In recent years, a number of techniques have been developed to enhance the rendering pipeline and create illustrative effects similar to the ones found in medical textbooks and surgery manuals. Such effects usually highlight important features of the subject while subjugating its context and providing depth cues for correct perception. Inspired by traditional visual and line-drawing techniques found in medical illustration, we have developed a collection of fast algorithms for more effective emphasis/de-emphasis of data as well as conveyance of spatial relationships. Our techniques utilize effective outlining techniques and selective depth enhancement to provide perceptual cues of object importance as well as spatial relationships in volumetric datasets. Moreover, we have used illustration principles to effectively combine and adapt basic techniques so that they work together to provide consistent visual information and a uniform style.  相似文献   

20.
交互式动态体绘制及其加速算法   总被引:4,自引:1,他引:4       下载免费PDF全文
体绘制三维成象法是一门新兴的3D采样数据场可视化技术,在医学成象和科学可视化领域有着极为广泛的应用,但由于3D数据量大,其使用往往受到巨大计算开销的限制,因此很多研究人员致力于静态体绘制加速算法的研究,并解决医学图象三维可视化中三维体数据显示速度与成象质量问题,因而提出了一种交互式动态体绘制算法,即从任意的视点距离和视线方向进行动态编制,并在分析其算法复杂度的基础上,提出一种新的加速算法,同时使得动态体绘制过程几乎达到实时的效果,经验证,这种算法比标准算法快4~5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号