首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the problem of scheduling multistage hybrid flowshops with multiprocessor tasks is contemplated. This is a strongly NP-hard problem for which a hybrid artificial bee colony (HABC) algorithm with bi-directional planning is developed to minimize makespan. To validate the effectiveness of the proposed algorithm, computational experiments were tested on two well-known benchmark problem sets. The computational evaluations manifestly support the high performance of the proposed HABC against the best-so-far algorithms applied in the literature for the same benchmark problem sets.  相似文献   

2.
In production processes, just-in-time (JIT) completion of jobs helps reduce both the inventory and late delivery of finished products. Previous research which aims to achieve JIT job completion mainly worked on static scheduling problems, in which all jobs are available from time zero or the available time of each job is known beforehand. In contrast, dynamic scheduling problems which involve continual arrival of new jobs are not much researched and dispatching rules remain the most frequently used method for such problems. However, dispatching rules are not high-performing for the JIT objective. This study proposes several routing strategies which can help dispatching rules realize JIT completion for jobs arriving dynamically in hybrid flow shops. The routing strategies are based on distributed computing which makes realtime forecast of completion times of unfinished jobs. The advantages include short computing time, quick response and robustness against disturbance. Computer simulations show that the performance of dispatching rules combined with the proposed routing strategies is significantly higher than that of dispatching rules only and that of dispatching rules combined with the previous routing methods.  相似文献   

3.
In this paper, we address a new Lagrangian relaxation (LR) method for solving the hybrid flowshop scheduling problem to minimize the total weighted tardiness. For the conventional LR, the problem relaxing machine capacity constraints can be decomposed into individual job-level subproblems which can be solved by dynamic programming. The Lagrangian dual problem is solved by the subgradient method. In this paper, a Lagrangian relaxation with cut generation is proposed to improve the Lagrangian bounds for the conventional LR. The lower bound is strengthened by imposing additional constraints for the relaxed problem. The state space reductions for dynamic programming for subproblems are also incorporated. Computational results demonstrate that the proposed method outperforms the conventional LR method without significantly increasing the total computing time.  相似文献   

4.
研究了一类带有序列相关准备时间和阶段间运输时间的混合流水车间成组调度问题,以最小化最大完工时间为目标建立混合整数线性规划模型,结合问题特征提出一种协同进化文化基因算法.算法采用置换序列的方式对工件组间调度、各工件组内工件间调度以及各工件组在各阶段上并行机的指派3个子问题进行统一编码,基于负载均衡思想和改进的先到先得策略将染色体解码为问题的可行解;进化过程中采用多种遗传算子执行全域搜索,并设计了一种基于破坏和重新构造的协同进化局部搜索策略.通过不同问题规模的数据实验和与对比算法的比较分析,验证了所提模型和算法的有效性.  相似文献   

5.
We investigate the problem of scheduling n jobs in s-stage hybrid flowshops with parallel identical machines at each stage. The objective is to find a schedule that minimizes the sum of weighted completion times of the jobs. This problem has been proven to be NP-hard. In this paper, an integer programming formulation is constructed for the problem. A new Lagrangian relaxation algorithm is presented in which precedence constraints are relaxed to the objective function by introducing Lagrangian multipliers, unlike the commonly used method of relaxing capacity constraints. In this way the relaxed problem can be decomposed into machine type subproblems, each of which corresponds to a specific stage. A dynamic programming algorithm is designed for solving parallel identical machine subproblems where jobs may have negative weights. The multipliers are then iteratively updated along a subgradient direction. The new algorithm is computationally compared with the commonly used Lagrangian relaxation algorithms which, after capacity constraints are relaxed, decompose the relaxed problem into job level subproblems and solve the subproblems by using the regular and speed-up dynamic programming algorithms, respectively. Numerical results show that the new Lagrangian relaxation method produces better schedules in much shorter computation time, especially for large-scale problems.  相似文献   

6.
This paper discusses the implementation of RFID technologies, which enable the shop floor visibility and reduce uncertainties in the real-time scheduling for hybrid flowshop (HFS) production. In the real-time HFS environment, the arriving of new jobs is dynamic, while the processes in work stages are not continuous. The decision makers in shop floor level and stage level have different objectives. Therefore, classical off-line HFS scheduling approaches cannot be used under these situations. In this research, two major measures are taken to deal with these specific real-time features. Firstly, a ubiquitous manufacturing (UM) environment is created by deploying advanced wireless devices into value-adding points for the collection and synchronization of real-time shop floor data. Secondly, a multi-period hierarchical scheduling (MPHS) mechanism is developed to divide the planning time horizon into multiple shorter periods. The shop floor manager and stage managers can hierarchically make decisions for their own objectives. Finally, the proposed MPHS mechanism is illustrated by a numerical case study.  相似文献   

7.
Distributed manufacturing plays an important role for large-scale companies to reduce production and transportation costs for globalized orders. However, how to real-timely and properly assign dynamic orders to distributed workshops is a challenging problem. To provide real-time and intelligent decision-making of scheduling for distributed flowshops, we studied the distributed permutation flowshop scheduling problem (DPFSP) with dynamic job arrivals using deep reinforcement learning (DRL). The objective is to minimize the total tardiness cost of all jobs. We provided the training and execution procedures of intelligent scheduling based on DRL for the dynamic DPFSP. In addition, we established a DRL-based scheduling model for distributed flowshops by designing suitable reward function, scheduling actions, and state features. A novel reward function is designed to directly relate to the objective. Various problem-specific dispatching rules are introduced to provide efficient actions for different production states. Furthermore, four efficient DRL algorithms, including deep Q-network (DQN), double DQN (DbDQN), dueling DQN (DlDQN), and advantage actor-critic (A2C), are adapted to train the scheduling agent. The training curves show that the agent learned to generate better solutions effectively and validate that the system design is reasonable. After training, all DRL algorithms outperform traditional meta-heuristics and well-known priority dispatching rules (PDRs) by a large margin in terms of solution quality and computation efficiency. This work shows the effectiveness of DRL for the real-time scheduling of dynamic DPFSP.  相似文献   

8.
This article addresses a two-stage hybrid flowshop scheduling problem with unrelated alternative machines. The problem to be studied has m unrelated alternative machines at the first machine center followed by a second machine center with a common processing machine in the system. The objective is to minimize the makespan of the system. For the processing of any job, it is assumed that the operation can be partially substituted by other machines in the first center, depending on its machining constraints. Such scheduling problems occur in certain practical applications such as semiconductors, electronics manufacturing, airplane engine production, and petrochemical production. We demonstrate that the addressed problem is NP-hard and then provide some heuristic algorithms to solve the problem efficiently. The experimental results show that the combination of the modified Johnson's rule and the First-Fit rule provides the best solutions within all proposed heuristics.Scope and purpose  相似文献   

9.
This paper investigates the hybrid flowshop scheduling with finite intermediate buffers, whose objective is to minimize the sum of weighted completion time of all jobs. Since this problem is very complex and has been proven strongly NP-hard, a tabu search heuristic is proposed. In this heuristic there are two main features. One is that a scatter search mechanism is incorporated to improve the diversity of the search procedure. And the other is that a permutation of N jobs representing their processing order in the first stage instead of a complex complete schedule is used to denote a solution. Computational experiments on randomly generated instances with different structures show that the proposed tabu search heuristic can provide good solutions compared to both the lower bounds and the algorithm proposed for this problem in a lately published literature.  相似文献   

10.
In most deterministic scheduling problems job processing times are considered as invariable and known in advance. Single machine scheduling problem with controllable processing times with no inserted idle time is presented in this study. Job processing times are controllable to some extent that they can be reduced or increased, up to a certain limit, at a cost proportional to the reduction or increase. In this study, our objective is determining a set of compression/expansion of processing times in addition to a sequence of jobs simultaneously, so that total tardiness and earliness are minimized. A mathematical model is proposed firstly and afterward a net benefit compression–net benefit expansion (NBC–NBE) heuristic is presented so as to acquire a set of amounts of compression and expansion of jobs processing times in a given sequence. Three heuristic techniques in small problems and in medium-to-large instances two meta-heuristic approaches, as effective local search methods, as well as these heuristics are employed to solve test examples. The single machine total tardiness problem (SMTTP) is already NP-hard, so the considered problem is NP-hard obviously. The computational experiments demonstrate that our proposed heuristic is efficient approach for such just-in-time (JIT) problem, especially equipped with competent heuristics.  相似文献   

11.
In this paper, the problem of hybrid flowshop hybridizing with lot streaming (HLFS) with the objective of minimizing the total flow time is addressed. We propose a mathematical model and an effective modified migrating birds optimization (EMBO) to solve this problem within an acceptable computational time. A so-called shortest waiting time rule (SWT) is introduced to schedule the jobs concurrently arriving at stages more reasonably. A combined neighborhood search strategy is developed that unites two different neighborhood operators during evolution, not only taking full advantage of their specializations but also promoting their joint efforts. Two competitive mechanisms are respectively used to increase the probability of locating better solutions at the front of the flock and enhance the interaction between two lines. The scout phase on the basis of the Glover operator and a well-designed local search is applied to the individuals trapped into local optimums and helps the algorithm explore potential promising domains. The dynamic solution acceptance criteria is developed to strike a compromise between intensification and diversification mechanisms. The performance of our proposed algorithm is evaluated by comparisons with seven other efficient algorithms in the literature. And the extensive numerical illustrations demonstrate that the proposed algorithm performs much more effectively for the addressed problem.  相似文献   

12.
We address the two-stage assembly scheduling problem where there are m machines at the first stage and an assembly machine at the second stage. The objective is to schedule the available n jobs so that total completion time of all n jobs is minimized. Setup times are treated as separate from processing times. This problem is NP-hard, and therefore we present a dominance relation and propose three heuristics. The heuristics are evaluated based on randomly generated data. One of the proposed heuristics is known to be the best heuristic for the case of zero setup times while another heuristic is known to perform well for such problems. A new version of the latter heuristic, which utilizes the dominance relation, is proposed and shown to perform much better than the other two heuristics.  相似文献   

13.
In this paper, a novel distributed two stage assembly flowshop scheduling problem (DTSAFSP) is addressed. The objective is to assign jobs to several factories and schedule the jobs in each factory with the minimum total completion time (TCT). In view of the NP-hardness of the DTSAFSP, we develop heuristics method to deal with the problem and propose three hybrid meta-heuristics (HVNS, HGA-RVNS, and HDDE-RVNS). The parameters of HGA-RVNS and HDDE-RVNS are tuned by using the Taguchi method and that of HVNS is done by using the single factor ANOVA method. Computational experiments have been conducted to compare the performances of the proposed algorithms. The analyses of computational results show that, for the instances with small numbers of jobs, HDDE-RVNS obtains better performances than HGA-RVNS and HVNS; whereas for the instances with large numbers of jobs, HGA-RVNS is the best one in all the proposed algorithms. Computational results indicate that the performances of the HDDE-RVNS and HGA-RVNS are not much affected by the number of machines at the first stage and factories. The experimental results also show that the RVNS-based local search steps in both HGA-RVNS and HDDE-RVNS are efficient and effective.  相似文献   

14.
可重入混合流水车间调度允许一个工件多次进入某些加工阶段,它广泛出现在许多工业制造过程中,如半导体制造、印刷电路板制造等.本文研究了带运输时间的多阶段动态可重入混合流水车间问题,目标是最小化总加权完成时间.针对该问题,建立了整数规划模型,进而基于工件解耦方式提出了两种改进的拉格朗日松弛(LR)算法.在这些算法中,设计了动态规划的改进策略以加速工件级子问题的求解,提出了异步次梯度法以得到有效的乘子更新方向.测试结果说明了所提出的两种改进算法在解的质量和运行时间方面均优于常规LR算法,两种算法都能在可接受的计算时间内得到较好的近优解.  相似文献   

15.
The order acceptance and scheduling (OAS) problem is important in make-to-order production systems in which production capacity is limited and order delivery requirements are applied. This study proposes a multi-initiator simulated annealing (MSA) algorithm to maximize the total net revenue for the permutation flowshop scheduling problem with order acceptance and weighted tardiness. To evaluate the performance of the proposed MSA algorithm, computational experiments are performed and compared for a benchmark problem set of test instances with up to 500 orders. Experimental results reveal that the proposed heuristic outperforms the state-of-the-art algorithm and obtains the best solutions in 140 out of 160 benchmark instances.  相似文献   

16.
This paper presents a hybrid approach based on the integration between a genetic algorithm (GA) and concepts from constraint programming, multi-objective evolutionary algorithms and ant colony optimization for solving a scheduling problem. The main contributions are the integration of these concepts in a GA crossover operator. The proposed methodology is applied to a single machine scheduling problem with sequence-dependent setup times for the objective of minimizing the total tardiness. A sensitivity analysis of the hybrid approach is carried out to compare the performance of the GA and the hybrid genetic algorithm (HGA) approaches on different benchmarks from the literature. The numerical experiments demonstrate the HGA efficiency and effectiveness which generates solutions that approach those of the known reference sets and improves several lower bounds.  相似文献   

17.
This article considers the unrelated parallel machine scheduling problem with sequence- and machine-dependent setup times and machine-dependent processing times. Furthermore, the machine has a production availability constraint to each job. The objective of this problem is to determine the allocation policy of jobs and the scheduling policy of machines to minimize the total completion time. To solve the problem, a mathematical model for the optimal solution is derived, and hybrid genetic algorithms with three dispatching rules are proposed for large-sized problems. To assess the performance of the algorithms, computational experiments are conducted and evaluated using several randomly generated examples.  相似文献   

18.
In unreliable supply environments, the strategy of pooling lead time risks by splitting replenishment orders among multiple suppliers simultaneously is an attractive sourcing policy that has captured the attention of academic researchers and corporate managers alike. While various assumptions are considered in the models developed, researchers tend to overlook an important inventory category in order splitting models: deteriorating items. In this paper, we study an order splitting policy for a retailer that sells a deteriorating product. The inventory system is modelled as a continuous review system (s, Q) under stochastic lead time. Demand rate per unit time is assumed to be constant over an infinite planning horizon and shortages are backordered completely. We develop two inventory models. In the first model, it is assumed that all the requirements are supplied by only one source, whereas in the second, two suppliers are available. We use sensitivity analysis to determine the situations in which each sourcing policy is the most economic. We then study a real case from the European pharmaceutical industry to demonstrate the applicability and effectiveness of the proposed models. Finally, more promising directions are suggested for future research.  相似文献   

19.
Wafer fabrication is a capital-intensive and highly complex manufacturing process. In the wafer fabrication facility (fab), wafers are grouped as a lot to go through repeated sequences of operations to build circuitry. Lot scheduling is an important task for manufacturers to improve production efficiency and meet customers’ requirements of on-time delivery. In this research we propose a dispatching rule for lot scheduling in wafer fabs, focusing on three due date-based objectives: on-time delivery rate, mean tardiness, and maximum tardiness. Although many dispatching rules have been proposed in the literature, they usually perform well in some objectives and bad in others. Our rule implements good principles in existing rules by means of (1) an urgency function for a single lot, (2) a priority index function considering total urgency of multiple waiting lots, (3) a due date extension procedure for dealing with tardy lots, and (4) a lot filtering procedure for selecting urgent lots. Simulation experiments are conducted using nine data sets of fabs. Six scenarios formed by two levels of load and three levels of due date tightness are tested for each fab. Performance verification of the proposed rule is achieved by comparing with nine benchmark rules. The experimental results show that the proposed rule outperforms the benchmark rules in terms of all concerned objective functions.  相似文献   

20.
Job shop scheduling with setup times, deadlines and precedence constraints   总被引:1,自引:0,他引:1  
In the last 15 years several procedures have been developed that can find solutions of acceptable quality in reasonable computing time to Job Shop Scheduling problems in environments that do not involve sequence-dependent setup times of the machines. The presence of the latter, however, changes the picture dramatically. In this paper we adapt one of the best known heuristics, the Shifting Bottleneck Procedure, to the case when sequence dependent setup times play an important role. This is done by treating the single machine scheduling problems that arise in the process as Traveling Salesman Problems with time windows, and solving the latter by an efficient dynamic programming algorithm. The model treated here also incorporates precedence constraints, release times and deadlines. Computational experience on a vast array of instances, mainly from the semiconductor industry, shows our procedure to advance substantially the state of the art. Paper presented in New York at MISTA 2005. E. Balas supported by the National Science Foundation through grant DMI-9802773 and by the Office of Naval Research through contract #N00014-97-1-0133.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号