首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dimethyl ether (DME)-oxygen mixture as the fuel of an anode-supported SOFC with a conventional nickel-cermet anode for operating at reduced temperatures is systematically investigated. The results of the catalytic tests indicate that sintered Ni-YSZ has high activity for DME partial oxidation, and DME conversion exceeds 90% at temperatures higher than 700 °C. Maximum methane selectivity is reached at 700 °C. Cell performance is observed between 600 and 800 °C. Peak power densities of approximately 400 and 1400 mW cm−2 at 600 and 800 °C, respectively, are reached for the cell operating on DME-O2 mixture. These values are comparable to those obtained using hydrogen as a fuel, and cell performance is reasonably stable at 700 °C for a test period of 340 min. SEM results demonstrate that the cell maintains good geometric integrity without any delimitation of respective layer after the stability test, and EDX results show that carbon deposition occurrs only at the outer surface of the anode. O2-TPO analysis shows that carbon deposition over the Ni-YSZ operating on DME is greatly suppressed in the presence of oxygen. Internal partial oxidation may be a practical way to achieve high cell performance at intermediate-temperatures for SOFCs operating on DME fuel.  相似文献   

2.
This study investigates dimethyl ether (DME) as a potential fuel for proton-conducting SOFCs with a conventional nickel cermet anode and a BaZr0.4Ce0.4Y0.2O3−δ (BZCY4) electrolyte. A catalytic test demonstrates that the sintered Ni + BZCY4 anode has an acceptable catalytic activity for the decomposition and steam reforming of DME with CO, CH4 and CO2 as the only gaseous carbon-containing products. An O2-TPO analysis demonstrates the presence of a large amount of coke formation over the anode catalyst when operating on pure DME, which is effectively suppressed by introducing steam into the fuel gas. The selectivity towards CH4 is also obviously reduced. Peak power densities of 252, 280 and 374 mW cm−2 are achieved for the cells operating on pure DME, a DME + H2O gas mixture (1:3) and hydrogen at 700 °C, respectively. After the test, the cell operating on pure DME is seriously cracked whereas the cell operating on DME + H2O maintains its original integrity. A lower power output is obtained for the cell operating on DME + H2O than on H2 at low temperature, which is mainly due to the increased electrode polarization resistance. The selection of a better proton-conducting phase in the anode is critical to further increase the cell power output.  相似文献   

3.
Thermodynamic analysis of dimethyl ether steam reforming (DME SR) was investigated for carbon formation boundary, DME conversion, and hydrogen yield for fuel cell application. The equilibrium calculation employing Gibbs free minimization was performed to figure out the required steam-to-carbon ratio (S/C = 0–5) and reforming temperature (25–1000 °C) where coke formation was thermodynamically unfavorable. S/C, reforming temperature and product species strongly contributed to the coke formation and product composition. When chemical species DME, methanol, CO2, CO, H2, H2O and coke were considered, complete conversion of DME and hydrogen yield above 78% without coke formation were achieved at the normal operating temperatures of molten carbonate fuel cell (600 °C) and solid oxide fuel cell (900 °C), when S/C was at or above 2.5. When CH4 was favorable, production of coke and that of hydrogen were significantly suppressed.  相似文献   

4.
In order to increase the coking resistance of SOFCs operating on DME fuel, a Pt/Al2O3–Ni/MgO mixture catalyst was investigated for internal partial oxidation of DME. Catalytic test demonstrated the mixture catalyst has higher activity for DME partial oxidation and lower CH4 selectivity than the individual Pt/Al2O3 and Ni/MgO catalysts. O2-TPO analysis demonstrated that the mixture catalyst also had much higher coke resistance than sintered Ni-YSZ anode, especially at high O2 to DME ratio. Raman spectroscopy of the carbon-deposited catalysts demonstrates that the graphitization degree of carbon is reduced with introducing O2 into DME, and the carbon deposited on the mixture catalyst is almost in amorphous structure. Two operation modes of the mixture catalyst for indirect internal partial oxidation of DME, i.e, directly depositing on the anode surface and locating in the anode chamber were tried. The performance of the cells operating on DME fuel through both operation modes was studied by IV polarization test and EIS characterization. The cells delivered attractive peak power density of around 750 mW cm−2 by operating on DME-O2 mixture gas, modestly lower than 1012–1065 mW cm−2 operating on pure hydrogen fuel at 700 °C. The direct deposition of Pt/Al2O3–Ni/MgO onto anode surface to perform as a functional layer and a DME to O2 ratio of 2:1 in the mixture gas is preferred to minimize coke formation and maximize power output for the cell to operate on DME fuel.  相似文献   

5.
Biogas is a variable mixture of methane, carbon dioxide and other gases. It is a renewable resource which comes from numerous sources of plant and animal matter. Ni-YSZ anode-supported solid oxide fuel cell (SOFC) can directly use clean synthesized biogas as fuel. However, trace impurities, such as H2S, Cl2 and F2 in real biogas can cause degradation in cell performance. In this research, both uncoated and coated Ni-YSZ anode-supported cells were exposed to three different compositions of synthesized biogases (syn-biogas) with 20 ppm H2S under a constant current load at 750-850 °C and their performance was evaluated periodically using standard electrochemical methods. Postmortem analysis of the SOFC anode was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results show that H2S causes severe electrochemical degradation of the cell when operating on biogas, leading to both complete electrochemical and mechanical failure. The Ni-CeO2 coated cell showed excellent stability during CH4 reforming and some tolerance to H2S contamination.  相似文献   

6.
An inexpensive 7 wt.% Ni-Al2O3 composite is synthesized by a glycine-nitrate process and systematically investigated as anode catalyst layer of solid-oxide fuel cells operating on methane fuel by examining its catalytic activity towards methane partial oxidation, steam and CO2 reforming at 600-850 °C, cell performance, mechanical performance, and carbon deposition properties. Ni-Al2O3 shows comparable catalytic activities to Ru-CeO2 for the above three reactions. The cell with a Ni-Al2O3 catalyst layer delivers maximum peak power densities of 494 and 532 mW cm−2 at 850 °C, operating on methane-H2O and methane-CO2 mixture gases, respectively, which are comparable to those operating on hydrogen. Ni-Al2O3 is found to have better mechanical performance than Ru-CeO2. O2-TPO demonstrates that Ni-Al2O3 does not inhibit the carbon formation under pure methane atmosphere, while the introduction of steam or CO2 can effectively suppress coke formation. However, due to the low nickel content in the catalyst layer, the coke formation over the catalyst layer is actually not serious under real cell operation conditions. More importantly, Ni-Al2O3 effectively protects the anode layer by greatly suppressing carbon formation over the anode layer, especially near the anode-electrolyte interface. Ni-Al2O3 is highly promising as an anode functional layer for solid-oxide fuel cells.  相似文献   

7.
The importance of heterogeneous catalysis in single-chamber solid oxide fuel cells (SC-SOFC) is universally recognized, but little studied. This work presents a thorough investigation of the catalytic activity of three Ni-YSZ half-cells in a well-described single-chamber reactor. One in-house electrolyte-supported and two commercially available anode-supported half-cells composed of anodes with thicknesses ranging from 50 μm to 1.52 mm are investigated. They are exposed to methane and oxygen gas mixtures within CH4:O2 flow rate ratios (Rin) of 0.8-2.0 and furnace temperatures of 600-800 °C. The conversion of methane always results in the formation of syngas species (H2 and CO). However, their yields vary considerably based on the individual anode, the operating temperature, and Rin. The SC-reactor design and the presence of hot-spots at the reactor entrance bring the methane and oxygen conversion rates well above the limit expected from experiments carried out with anode half-cells only. Major variations in the H2/CO ratio are observed. In lowering the temperature from 800 °C to 600 °C, it spreads from well below to well above the stoichiometric value of 2.0 expected for the partial oxidation reaction. To optimize the SC-SOFC any further, the findings stress the need to undertake even more catalytic studies of its electrode materials under actual structure and morphology as well as final reactor configuration.  相似文献   

8.
The contaminants that are potentially present in the coal-derived gas stream and their thermochemical nature are discussed. Accelerated testing was carried out on Ni-YSZ/YSZ/LSM solid oxide fuel cells (YSZ: yttria stabilized zirconia and LSM: lanthanum strontium manganese oxide) for eight main kind of contaminants: CH3Cl, HCl, As, P, Zn, Hg, Cd and Sb at the temperature range of 750-850 °C. The As and P species, at 10 and 35 ppm, respectively, resulted in severe power density degradation at temperatures 800 °C and below. SEM and EDX analysis indicated that As attacked the Ni region of the anode surface and the Ni current collector, caused the break of the current collector and the eventual cell failure at 800 °C. The phosphorous containing species were found in the bulk of the anode, they were segregated and formed “grain boundary” like phases separating large Ni patches. These species are presumably nickel phosphide/phosphate and zirconia phosphate, which could break the Ni network for electron transport and inhibit the YSZ network for oxygen ion transport. The presence of 40 ppm CH3Cl and 5 ppm Cd only affected the cell power density at above 800 °C and Cd caused significant performance loss. Whereas the presence of 9 ppm Zn, 7 ppm Hg and 8 ppm Sb only degraded the cell power density by less than 1% during the 100 h test in the temperature range of 750-850 °C.  相似文献   

9.
The Ni-YSZ cermet anode of the solid oxide fuel cell (SOFC) has excellent electrochemical performance in a clean blended synthetic coal syngas mixture. However, chloride, one of the major contaminants existing in coal-derived syngas, may poison the Ni-YSZ cermet and cause degradation in cell performance. Both hydrogen chloride (HCl) and chlorine (Cl2) have been reported to attack the Ni in the anode when using electrolyte-supported SOFCs. In this paper, a commercial anode-supported SOFC was exposed to syngas with a concentration of 100 ppm HCl under a constant current load at 800 °C for 300 h and 850 °C for 100 h. The cell performance was evaluated periodically using electrochemical methods. A unique feature of this experiment is that the active central part of the anode was exposed directly to the fuel without an intervening current collector. Post-mortem analyses of the SOFC anode were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results show that the 100 ppm concentration of HCl causes about 3% loss of performance for the Ni-YSZ anode-supported cell during the 400 h test. Permanent changes were noted in the surface microstructure of the nickel particles in the cell anode.  相似文献   

10.
We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 °C. The single cell with the painted cathode generates a maximum power density of 405 mW cm−2 at 850 °C, when operating with humidified hydrogen.  相似文献   

11.
This study investigates the performance of a standard Ni-YSZ anode supported cell under ethanol steam reforming operating conditions. Therefore, the fuel cell was directly operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used for comparison to check the conversion of ethanol and of reformate gases (H2, CO) in the fuel cell. The electrochemical properties of the fuel cell fed with four different fuel compositions were characterized between 710 and 860 °C by I-V and EIS measurements at OCV and under polarization. In order to elucidate the limiting processes, impedance spectra obtained with different gas compositions were compared using the derivative of the real part of the impedance with respect of the natural logarithm of the frequency.Results show that internal steam reforming of ethanol takes place significantly on Ni-YSZ anode only above 760 °C. Comparisons of results obtained with reformate gas showed that the electrochemical cell performance is dominated by the conversion of hydrogen. The conversion of CO also occurs either directly or indirectly through the water-gas shift reaction but has a significant impact on the electrochemical performance only above 760 °C.  相似文献   

12.
Ethane and electrical power are co-generated in proton ceramic fuel cell reactors having Cr2O3 nanoparticles as anode catalyst, BaCe0.8Y0.15Nd0.05O3−δ (BCYN) perovskite oxide as proton conducting ceramic electrolyte, and Pt as cathode catalyst. Cr2O3 nanoparticles are synthesized by a combustion method. BaCe0.8Y0.15Nd0.05O3−δ (BCYN) perovskite oxides are obtained using a solid state reaction. The power density increases from 51 mW cm−2 to 118 mW cm−2 and the ethylene yield increases from about 8% to 31% when the operating temperature of the solid oxide fuel cell reactor increases from 650 °C to 750 °C. The fuel cell reactor and process are stable at 700 °C for at least 48 h. Cr2O3 anode catalyst exhibits much better coke resistance than Pt and Ni catalysts in ethane fuel atmosphere at 700 °C.  相似文献   

13.
The catalytic activity of single chamber solid oxide fuel cells (SC-SOFCs) with respect to hydrocarbon fuels induces a major overheating of the fuel cell, temperature variations along its length, and changes in the original fuel/air composition mainly over the anode component. This paper assesses the temperature gradients and the variations in performance along electrolyte-supported Ni-YSZ/YSZ/LSM cells fed with methane gas. The investigations are performed in a useful range of CH4/O2 ratios between 1.0 and 2.0, in which the furnace temperature and flow rate of methane–air mixtures are held constant at 700 °C and 450 sccm, respectively. Electrochemical impedance spectroscopy (EIS) is used to sense the temperature at the location where smaller size cathodes are positioned on the opposite side of a full-size anode. Due to temperature increases, cells always perform better when the small cathodes are located at the inlet as well as at a CH4/O2 ratio of 1.0. With an increase in ratio, the results show the presence of artefacts due to the use of an active LSM material for the combustion of methane, and open-type gas distribution plates for the single chamber reactor.  相似文献   

14.
A solid oxide fuel cell was designed to be operated with pure hydrocarbons, without additive or carrier gas, in order to bring technological simplifications, cost reductions and to extend the fuel flexibility limits. The cell was built-up from a conventional cell (LSM/YSZ/Ni-YSZ), to which was added a Ir-CeO2 catalyst layer at the anode side and an original current collecting system. The cell was first operated with steam in gradual internal reforming (GIR) conditions (R = [H2O]/[CH4] < 1) with carrier gas at the anode. The optimal operating parameters were determined in terms of flow rates, cell potential, and fuel utilisation. The cell was finally operated with pure dry methane at 900 °C at 0.6 V yielding current density of about 0.1 A cm−2 at max power for 120 h. Small but abrupt deterioration of the performances was observed, but no carbon deposition. Electrical and chemical analysis of this degradation are provided.At total, the fuel cell was operated for more than 200 h in pure dry methane, demonstrating that gradual internal reforming actually occurred efficiently in the anode compartment, which make possible operation without reforming agent such as H2O or CO2 for other hydrocarbon fuels.  相似文献   

15.
A double-perovskite Sr2FeMoO6 (SFMO) has been synthesized with a combined citrate-EDTA complexing method. The material shows a double-perovskite structure after reduction in 5% H2/Ar at 1100 °C for 20 h. A single fuel cell using this material as anode is constructed with the configuration of SFMO?La0.8Sr0.2Ga0.83Mg0.17O3?Ba0.5Sr0.5Co0.8Fe0.2O3. The cell exhibits a remarkable electrochemical activity in both H2 and dry CH4, respectively. With Oxygen as oxidant, the maximum power density is 863.7 mW cm−2 with H2 as the fuel and 604.8 mW cm−2 with dry CH4 as the fuel at 850 °C, respectively. SFMO has an almost linear thermal expansion coefficient from 30 to 900 °C and is very close to that of La0.8Sr0.2Ga0.83Mg0.17O3. A durability test of the single cell indicates that SFMO is stable in dry CH4 operation. Therefore SFMO can be recommended as a promising anode material for LaGaO3-based solid oxide fuel cells operating with both H2 and dry CH4.  相似文献   

16.
An integrated experimental/modeling approach was utilized to assess the structural integrity of Ni-yttria-stabilized zirconia (YSZ) porous anode supports during the solid oxide fuel cell (SOFC) operation on coal gas containing trace amounts of phosphorus impurities. Phosphorus was chosen as a typical impurity exhibiting strong interactions with the nickel followed by second phase formation. Tests were performed using Ni-YSZ anode-supported button cells exposed to 0.5-10 ppm of phosphine in synthetic coal gas at 700-800 °C. The extent of Ni-P interactions was determined by a post-test scanning electron microscopy (SEM) analysis. Severe damage to the anode support due to nickel phosphide phase formation and extensive crystal coalescence was revealed, resulting in electric percolation loss. The subsequent finite element stress analyses were conducted using the actual anode support microstructures to assist in degradation mechanism explanation. Volume expansion induced by the Ni phase alteration was found to produce high stress levels such that local failure of the Ni-YSZ anode became possible under the operating conditions.  相似文献   

17.
Despite active development, solid oxide fuel cells (SOFCs) based on Ni-YSZ anodes still suffer from thermomechanical instability under conditions where the anode side is exposed to oxidising conditions at high temperature. In the first part of the paper, structures and solutions, which could improve the redox stability of Ni-YSZ anode supported SOFC's in terms of dimensional and mechanical stability are reported. Porosity is identified as a major microstructural parameter linked to the dimensional and structural stability during redox cycling. The cumulative redox strain (CRS) after three isothermal redox cycles at 850 °C increases by a factor of more than 20 when the as-sintered porosity of the composites is reduced from 34 to 9%. The effect of reduction and redox cycling on the Ni-YSZ anode are discussed in light of electrochemical measurements using impedance spectroscopy on symmetric cells. When the symmetric cells are reduced and redox cycled isothermally at 850 °C, no major change in the serial or polarisation resistance of the cell and electrodes was measured. When the cells are, after the similar initial reduction treatment, redox cycled at 650 °C, the serial resistance remains almost unchanged but the polarisation resistance decreased by about 60%.  相似文献   

18.
The Ni-YSZ anode-supported solid oxide fuel cell (SOFC) can generate electrical power by using coal-derived syngas as the fuel. However, trace contamination of phosphine (PH3) in the syngas can cause irreversible degradation in cell performance. A series of tests at 10 ppm PH3 in the fuel gas was carried out under a variety of operating conditions, viz, with/without electrochemical reaction in syngas and with/without H2O in H2 fuel at 750 °C, 800 °C and 850 °C. The poisoning effects were evaluated by both electrochemical methods and chemical analyses. The post-mortem analyses of the SOFC anode were performed by means of XRD, SEM/EDS, and XPS. The results show that the degradation rate is larger at the higher cell working temperature using syngas with PH3 in a 200 h test though PH3 is more reactive with Ni in the anode at lower working temperature and produces a secondary nickel phosphide (NixPy) phase. The dominant compositions of NixPy on the cell anode are Ni5P2 with the presence of H2O, and Ni12P5 without the presence of H2O. The production of NixPy can be generated on the cell anode using syngas or dry H2 fuel with 10 ppm PH3 contaminant. Further, the appearance of NixPy phases is independent of the electrochemical reactions in the cell.  相似文献   

19.
The full oxidation of Ni-YSZ anode-supported cells at high temperatures (>700 °C) is shown here to lead to much more severe degradation (larger quantity and wider cracks in the electrolyte) than at lower temperatures. This correlates with the linear mass gain/time profile observed in TGA experiments at high temperatures, indicative of diffusion controlled Ni oxidation and thus the presence of O2 (and Ni/NiO) concentration gradients into the depth of the anode layer. At low partial pressures of O2, the severity of cracking also increases. SEM studies of partially oxidized anode layers confirmed that Ni oxidation is non-homogeneous when carried out at either high temperatures or low pO2, in which case the outer regions of the anode (near the anode/air interface) become almost fully oxidized, while the inner regions (near the electrolyte) remain metallic. Under these conditions, the continued volume expansion associated with NiO formation can then only occur towards the electrolyte, increasing the compressive stress inside the anode as the Ni continues to be oxidized, leading to electrolyte cracking and warping (convex to the electrolyte). To prevent severe degradation to the cell, efforts should therefore be made to avoid gradients in NiO/Ni content during oxygen exposure of Ni-YSZ anode-supported cells at high temperatures.  相似文献   

20.
An experimental investigation is performed to establish the optimal operating conditions of a porous media after-burner integrated with a 1 kW solid oxide fuel cell (SOFC) system fed by a natural gas reformer. The compositions of the anode off-gas and cathode off-gas emitted by the SOFC when operating with fuel utilizations in the range 0-0.6 are predicted using commercial GCTool software. The numerical results are then used to set the compositions of the anode off-gas and cathode off-gas in a series of experiments designed to clarify the effects of the fuel utilization, cathode off-gas temperature and excess air ratio on the temperature distribution within the after-burner. The experimental results show that the optimal after-burner operation is obtained when using an anode off-gas temperature of 650 °C, a cathode off-gas temperature of 390 °C, a flame barrier temperature of 700 °C, an excess air ratio of 2 and a fuel utilization of Uf = 0.6. It is shown that under these conditions, the after-burner can operate in a long-term, continuous fashion without the need for either cooling air or any additional fuel other than that provided by the anode off-gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号