首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pt–Cu catalysts supported on Al2O3 and Nb2O5 were studied for use in selective CO oxidation. The addition of copper enhanced the activity and selectivity of Pt–Cu/Nb2O5 at lower temperatures when compared to Pt/Nb2O5. On the other hand, copper addition was not beneficial in the case of Al2O3 supported catalysts.  相似文献   

2.
In this paper, TiO2 nanotubes/Pt/C (TNT/Pt/C) catalysts for ethanol electro-oxidation were prepared by co-mixing method in solution. TEM and XRD showed that uniform anatase TiO2 nanotubes were about 100 nm in length and 8 nm in diameter and the TGA results indicated that the amount of H2O contained in TiO2 nanotubes was much more than that in anatase TiO2. The composite catalysts activities were measured by cyclic voltammetry (CV), chronoamperometry and CO stripping voltammetry at 25 °C in acidic solutions. The results demonstrated that the TNT can greatly enhance the catalytic activity of Pt for ethanol oxidation and increase the utilization rate of platinum. The CO stripping test showed that the TNT can shift the CO oxidation potential to lower direction than TiO2 does, which is helpful for ethanol oxidation.  相似文献   

3.
With a colloid method, RuO2 was deposited on Sb-doped SnO2 nanoparticles (ATO, Aldrich, 30-40 nm), which was employed as a novel support material for anode catalysts of polymer electrolyte membrane water electrolysers (PEMWE). Distinctive RuO2 nanoparticles (10-15 nm) were stably deposited on ATO nanoparticles, which were characterized with XRD and SEM. RuO2/ATO exhibited higher activity than unsupported RuO2 for oxygen evolution. A PEMWE single cell with 10 mg cm−2 20 wt.% RuO2/ATO achieved 1.56 V at 1 A cm−2 at 80 °C.  相似文献   

4.
Self-assembled films from SnO2 and polyallylamine (PAH) were deposited on gold via ionic attraction by the layer-by-layer (LbL) method. The modified electrodes were immersed into a H2PtCl6 solution, a current of 100 μA was applied, and different electrodeposition times were used. The SnO2/PAH layers served as templates to yield metallic platinum with different particle sizes. The scanning tunnel microscopy images show that the particle size increases as a function of electrodeposition time. The potentiodynamic profile of the electrodes changes as a function of the electrodeposition time in 0.5 mol L−1 H2SO4, at a sweeping rate of 50 mV s−1. Oxygen-like species are formed at less positive potentials for the Pt–SnO2/PAH film in the case of the smallest platinum particles. Electrochemical impedance spectroscopy measurements in acid medium at 0.7 V show that the charge transfer resistance normalized by the exposed platinum area is 750 times greater for platinum electrode (300 kΩ cm2) compared with the Pt–SnO2/PAH film with 1 min of electrodeposition (0.4 kΩ cm2). According to the Langmuir–Hinshelwood bifunctional mechanism, the high degree of coverage with oxygen-like species on the platinum nanoparticles is responsible for the electrocatalytic activity of the Pt–SnO2/PAH concerning ethanol electrooxidation. With these features, this Pt–SnO2/PAH film may be grown on a proton exchange membrane (PEM) in direct ethanol fuel cells (DEFC).  相似文献   

5.
Ultrafast-switching viologen-anchored TiO2 electrochromic device (ECD) was developed by introducing Sb-doped SnO2 (SbxSn1−xO2, ATO) as counter electrode (CE), and the switching behavior of the fabricated ECD was investigated as a function of Sb-doping concentration. About 9-nm-sized SbxSn1−xO2 (x=0–0.3) nanoparticles were synthesized by a solvothermal reaction of tin (IV) chloride and antimony (III) chloride at 240 °C, and employed to fabricate 2.4-μm-thick transparent CE. Working electrode (WE) was formed from the 7-nm-sized TiO2 nanoparticle by a doctor blade method, and the thickness of the nanoporous TiO2 electrode was 4.5 μm. The phosphonated viologen, bis(2-phosphonylethyl)-4,4′-bipyridinium dibromide, was then adsorbed on the prepared films for the construction of the ECD. The response time was strongly dependent on the doping concentration of Sb in ATO, and the fastest switching response was observed at 3 mol%. At this composition, the coloration time was 5.7 ms, and the bleaching time was 14.4 ms, which is regarded as one of the best results so far reported.  相似文献   

6.
Methanol electro-oxidation was investigated on PtSnO2/C based electrocatalyst in acidic solution. This study was focused on the use of this material as anodic active material for potential applications in direct methanol fuel cells. PtSnO2/C nanoparticles were prepared using a microwave-assisted synthesis. Physic-chemical and electrochemical characterizations were carried out by XRD, TEM, EDS, cyclic voltammetry and chronoamperometric studies. TEM analysis revealed that PtSnO2/C electrocatalyst is formed by well dispersed nanoparticles with average particle size around 2.2 nm. The results showed that synthesized PtSnO2/C has better electrochemical characteristics than commercial PtRu/C for methanol oxidation. It was found that PtSnO2/C showed less methanol oxidation reaction onset potential than PtRu/C. The investigation of some kinetic parameters like Tafel slope and charge transfer coefficient showed that PtSnO2/C has a Pt based electrocatalyst performance associated to the bi-functional process able to oxidize CH3OH and COads, it is probably activated by the co-existence of SnO2 phase.  相似文献   

7.
Innovative TiO2/SnO2 nanofibers were fabricated via electrospinning an innovated precursor solution and used for photocatalytic H2 generation. The nanofibers exhibited greatly enhanced H2 evolution rate compared to bare TiO2 nanofiber and P25. The enhanced efficiency of the TiO2/SnO2 nanofibers was attributed to its excellent synergistic properties: (1) its good mesoporosity; (2) the red-shift of absorbance spectra to enhance light absorbance capability; (3) its long nanofibrous structure and (4) anatase TiO2 – rutile TiO2 – rutile SnO2 ternary junctions favorable for the separation of electrons and holes. Based on our experimental results, the optimum ratio of TiO2/SnO2 nanofibers with 3% Sn demonstrated the highest efficiency in H2 generation.  相似文献   

8.
The nano-grain ZnO/SnO2 composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO2 colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO2 electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO2 electrode compared to the value of 1.66% for the usual nano-particle SnO2 electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO2 electrode.  相似文献   

9.
Fuel cells have risen as a clean technology for power generation and much effort has been done for converting renewable feedstock in hydrogen. The water-gas shift reaction (WGS) can be applied aiming at reducing the CO concentration in the reformate. As Pt/CeO2 catalysts have been pointed out as an alternative to the industrial WGS catalysts, the modification of such systems with magnesium was investigated in this work. It was shown that the addition of MgO to Pt/CeO2 increased the activity and stability of the catalyst irrespective of the preparation method used, either impregnation or co-precipitation. Based on TPR and IR spectroscopy experiments, it was seen that the presence of magnesium improved ceria reduction favoring the creation of OH groups, which are considered the active sites for the WGS reaction. The evolution of the surface species formed under reaction conditions (CO, H2O, H2) observed by DRIFTS evidenced that the formation of formate species and the generation of CO2 is closely attached to each other; under a reaction stream containing hydrogen the presence of formate species showed to be more relevant while the CO2 formation was hindered. It is suggested that the addition of MgO favors the formate decomposition and lower the carbonate concentration on the catalyst surface during WGS reaction.  相似文献   

10.
A new nitrogen-doped carbon (CNx) support for Pt electrocatalysts was prepared by carbonizing polypyrrole on the surface of ZrO2 (ZrO2@CNx) at high temperature. Well-dispersed Pt nanoparticles were easily formed on the ZrO2@CNx. The electrocatalyst was characterized by FT-IR, XRD, TEM, XPS. The electrochemical performances indicate that the presence of ZrO2 modified the electro-structure of Pt on the catalyst surface and that ZrO2@CNx had superior oxygen reduction activity compared to a nitrogen-doped carbon coated carbon (C@CNx).  相似文献   

11.
Photo-assisted H2 evolution has been realized over the new heterosystem CuFeO2/SnO2 without any noble metal and was studied in connection with some physical parameters. The delafossite CuFeO2 has been prepared by thermal decomposition from various salts. The polarity of generated voltage is positive indicating that the materials exhibit p-type conductivity whereas the electroneutrality is achieved by oxygen insertion. The plot of the logarithm (conductivity) vs. T−1 gives average activation energy of 0.12 eV. CuFeO2 is a narrow band gap semiconductor with an optical gap of 1.32 eV. The oxide was characterized photoelectrochemically; its conduction band (−1.09 VRHE) is located below that of SnO2 (−0.86 VRHE) at pH ∼13.5 itself more negative than the H2O/H2 level leading to a thermodynamically favorable H2 evolution under visible irradiation. The sensitizer CuFeO2, working as an electron pump, is stable towards photocorrosion by hole consumption reactions involving the reducing agents X2− (=S2O32− and SO32−). The photoactivity was dependent on the precursor and the best performance (0.026 ml h−1 mg−1) was obtained in S2O32− (pH ∼13.5) over CuFeO2 synthesized from nitrate with a mass ratio (CuFeO2/SnO2) equal to unity. A quantum yield of 0.5% was obtained under polychromatic light. H2 liberation occurs concomitantly with the oxidation of S2O32− to dithionate and sulfate. The tendency towards saturation, in a closed system, is mainly ascribed to the competitive reduction of the end product S2O62−.  相似文献   

12.
The effect of potassium as a promoter on the activity of Pt/CeO2 catalysts for hydrogen production from ethanol was studied in this work. The Pt/CeO2 catalysts with or without potassium were prepared with incipient impregnation method and analyzed using synchrotron-based X-ray diffraction (XRD), X-ray absorption near-edge spectroscopy (XANES), oxygen adsorption, ethanol temperature programmed desorption (TPD) NH3-TPD, and TPR. We find that Pt particles on all CeO2-based catalysts were less than 2 nm. Potassium addition did not have benefit on hydrogen production activity. However, potassium modified active sites, acidity, and interaction between Pt and CeO2. Oxygen storage capacity (OSC) was decreased, while the acidity was neutralized and the interaction between Pt and CeO2 was weakened when potassium was added to Pt/CeO2. Potassium promoted ethanol decomposition reaction while inhibited decarbonylation of acetaldehyde and CH4 formation. This work confirms our previous finding that Pt-CeO2 synergistic interaction played an important role for hydrogen production from bio-alcohols.  相似文献   

13.
Pt nanoparticles decorated TiO2 nanotubes (Pt/TiO2NTs) modified electrode has been successfully synthesized by depositing Pt in TiO2NTs, which were prepared by anodization of the Ti foil. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize their structures and properties. The Pt/TiO2NTs electrode shows excellent electrocatalytic activity toward methanol oxidation reaction (MOR) in alkaline electrolyte without UV irradiation.  相似文献   

14.
The CuO/SnO2 composites have been prepared by the simple co-precipitation method and further characterized by the XRD, FESEM and Raman spectroscopy. The photocatalytic H2 production from acetic acid (HAc) solution over CuO/SnO2 photocatalyst has been investigated at room temperature under UV irradiation. Effects of CuO loading, photocatalyst concentration, acetic acid concentration and pH on H2 production have been systematically studied. Compared with pure SnO2, the 33.3 mol%CuO/SnO2 composite exhibited approximately twentyfold enhancement of H2 production. The H2 yield is about 0.66 mol-H2/mol-HAc obtained under irradiation for prolonged time. The Langmuir-type model is applied to study the dependence of hydrogen production rate on HAc concentration. A possible mechanism for photocatalytic degradation of acetic acid over CuO/SnO2 photocatalyst is proposed as well. Our results provide a method for pollutants removal with simultaneous hydrogen generation. Due to simple preparation, high H2 production activity and low cost, the CuO/SnO2 photocatalyst will find wide application in the coming future of hydrogen economy.  相似文献   

15.
The effect of Pt loading amount on SO2 oxidation reaction in an SO2-depolarized electrolyzer used in the hybrid sulfur (HyS) process for hydrogen generation was investigated by using transmission electron microscopy (TEM), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). From the analysis of the CVs, it was found that the electrochemical active surface area increased as the Pt loading amount increased, while Pt utilization decreased. The CVs obtained in the SO2-free and SO2-saturated 50 wt.% H2SO4 solutions indicated that the chemical transformation of the adsorbed species to PtO at a higher potential creates passivation layers which partially cover the electrode surface and inhibit SO2 oxidation reaction. The LSVs revealed that the increase in Pt loading amount resulted in a considerable improvement of SO2 oxidation kinetics in a low potential region as compared with that in a high potential region. However, the area-specific activity for SO2 oxidation reaction decreased due to the reduction of Pt utilization.  相似文献   

16.
We report on the synthesis of sulfated SnO2 modified multi-walled carbon nanotubes (MWCNTs) composites as new supports of Pt catalyst (Pt-S-SnO2/MWCNTs) with the aims to enhance electron and proton conductivity and also catalytic activity for ethanol oxidation. The Pt-S-SnO2/MWCNTs catalyst is synthesized by a combination of improved sol-gel and pulse-microwave assisted polyol methods. The surface presence, morphology and structure of the Pt-S-SnO2/MWCNTs catalyst are characterized by Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. The electrocatalytic properties of the Pt-S-SnO2/MWCNTs catalyst for ethanol oxidation reactions are investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results show that Pt-S-SnO2/MWCNTs catalyst exhibits higher catalytic activity for ethanol oxidation than Pt supported on non-sulfated SnO2/MWCNTs composites.  相似文献   

17.
Ti modified Pt/ZrO2 catalysts were prepared to improve the catalytic activity of Pt/ZrO2 catalyst for a single-stage WGS reaction and the Ti addition effect on ZrO2 was discussed based on its characterization and WGS reaction test. Ti impregnation into ZrO2 increased the surface area of the support and the Pt dispersion. The reducibility of the catalyst was enhanced in the controlled Ti impregnation (∼20 wt.%) over Pt/ZrO2 by the Pt-catalysed reduction of supports, particularly, at the interface between ZrO2 and TiO2. The significant CO2 gas band in the DRIFTS results of Pt/Ti[20]/ZrO2 indicated that the Ti addition made the formate decomposition rate faster than the Pt/ZrO2 catalyst, linked with the enhanced Pt dispersion and reducibility of the catalyst. Consequently, Ti impregnation over the ZrO2 support led to a remarkably enhanced CO conversion and the reaction rate of Pt/Ti[20]/ZrO2 increased by a factor of about 3 from the bare Pt/ZrO2 catalyst.  相似文献   

18.
The influence of redox-treated Pt/TiO2 photocatalysts on H2 production is investigated. Catalyst characterizations are performed by TEM, XPS, XRD, BET, and UV–vis/DR spectroscopy techniques. In terms of production rate, the oxidation treatment shows higher reactivity than the reduction treatment. The reduction treatment allows the formation of metallic Pt(0), which more easily catalyzes the transition of TiO2 from the anatase to the rutile phases. Reduction-treated Pt/TiO2 photocatalysts have lower SBET values than oxidation-treated Pt/TiO2 photocatalysts due to the higher percentage of TiO2 in the rutile phase. Combining the results of XPS and optical analyses, PtO/TiO2 shows a higher energy band gap than metallic Pt(0)/TiO2, indicating that oxidation-treated Pt/TiO2 is more capable of achieving water splitting for H2 production. According to the results of this study, the oxidation treatment of Pt/TiO2 photocatalysts can significantly enhance the reactivity of photocatalytic H2 production because of their homogenous distribution, lower phase transition, higher SBET, and higher energy band gap.  相似文献   

19.
Thin film Pt/TiO2 catalysts are evaluated in a polymer electrolyte electrochemical cell. Individual thin films of Pt and TiO2, and bilayers of them, were deposited directly on Nafion membranes by thermal evaporation with varying deposition order and thickness (Pt loadings of 3–6 μg cm−2). Structural and chemical characterization was performed by transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Oxygen reduction reaction (ORR) polarization plots show that the presence of a thin TiO2 layer between the platinum and the Nafion increases the performance compared to a Pt film deposited directly on Nafion. Based on the TEM analysis, we attribute this improvement to a better dispersion of Pt on TiO2 compared to on Nafion and in addition, substantial proton conduction through the thin TiO2 layer. It is also shown that deposition order and the film thickness affects the performance.  相似文献   

20.
This paper reports on the synthesis of SnO2 18 nm diameter colloidal suspension for the fabrication of nanoporous electrodes. The new suspension allows the fabrication of thick and homogeneous electrodes by simple one layer spreading; in contrast to the successive spin coating of the commonly used commercial suspension that results in a thin inhomogeneous electrode. When used in dye-sensitized solar cells, the new electrodes increase the light-to-energy conversion efficiency by a factor of 2.1 in comparison with standard commercial suspension based electrodes. The improvement is mostly the result of an increase of the photocurrent. This increase is attributed to the better electrolyte migration, and presumably also to an increase of the photoinjected electron diffusion rate in the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号