首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
狭窄黏性填土刚性挡墙主动土压力研究   总被引:2,自引:0,他引:2  
对于临近既有地下室或竖直基岩面的挡土墙,由于墙后填土宽度有限,采用经典的库伦、朗肯土压力理论计算挡土墙主动土压力是不合适的。采用有限元分析软件ABAQUS,对狭窄黏性填土刚性挡土墙的主动土压力问题进行研究,探讨了墙后土体的临界裂缝深度和滑裂面的发展规律。考虑墙土之间的黏着力和填土竖向裂缝,建立新的理论分析模型,得到了挡土墙水平主动土压力合力的求解方法和主动土压力分布的解析公式。土压力合力系数与土压力强度的理论解和数值解吻合较好,验证了本文理论解的合理性。研究表明,主动极限状态下,填土表面两侧均将产生竖向裂缝,且临界裂缝深度不随填土宽度变化,其值与朗肯裂缝深度接近;随着填土宽度的减小,填土内将产生一道甚至多道滑裂面,挡土墙主动土压力也从基于半无限土体假定的广义库伦土压力值逐渐减小。  相似文献   

2.
基于CSA和薄层单元法主动土压力计算方法   总被引:1,自引:1,他引:1  
土压力计算一直沿用经典朗肯和库仑士压力理论,所得土压力沿墙高呈三角形分布。而实际上认为挡土墙后土压力总是沿墙高呈三角形分布是不合理的,墙体位移量和形式不同,土压力分布将呈现不同的曲线形式,墙背与填土间的摩擦以及滑裂面的形状对土压力分布也有重要影响。假定挡土墙后土体潜在滑裂面由对数螺线滑动面和平面组合而成,根据挡土墙后土体薄层单元的平衡条件推导出粘性土层主动土压力的计算公式。通过在普通模拟退火算法中引入复合形法进行局部最优解搜索。得到了一种搜索性能更好的复合形模拟退火算法,并将其用于挡土墙后填土潜在最危险滑裂面搜索和相应的主动土压力计算,并给出了两个算例。其计算结果表明:与传统的朗肯和广义库仑土压力理论的计算结果相比,所提方法更符合实测结果。  相似文献   

3.
有限土体刚性挡墙平动模式被动土压力试验研究   总被引:2,自引:0,他引:2  
经典的库仑或朗肯土压力理论无法适用有限土体情况下的土压力问题。利用研制的土压力试验模型装置,进行了一组不同填土宽度的刚性挡墙平动模式室内模型试验,采用微型土压力盒量测从静止状态到被动极限状态的水平土压力分布的变化,利用颗粒图像测速技术研究土体内滑裂面发展规律。试验结果表明:半无限土体情况下的被动土压力大小、分布和合力作用点与库仑被动土压力较为接近。而有限宽度情况下移动挡墙上各深度的被动土压力值均大于库仑被动土压力,且土体宽度越窄,挡墙的被动极限位移有增大趋势,挡墙下部的被动土压力增大更明显,土压力分布的非线性程度愈高,被动土压力系数越大,被动土压力合力作用点明显往墙底移动。随着填土宽度的减小,填土表面的隆起愈明显,滑裂面的倾角略有增大。当移动挡墙达到或接近极限状态时,固定边界上的水平土压力随填土宽度的减小而逐渐增大,甚至接近库仑被动土压力。  相似文献   

4.
挡土墙被动土压力的库仑统一解   总被引:2,自引:0,他引:2       下载免费PDF全文
彭明祥 《岩土工程学报》2008,30(12):1783-1788
基于极限平衡理论,视墙后填土为服从Mohr-Coulomb屈服准则的理想弹塑性材料,指出库仑土压力理论存在的一些缺陷,明确提出极限土压力是由墙后塑性土体产生,并假定塑性区的一族滑移线为直线即平面滑裂面,建立了更为完善的滑楔分析模型,求解了在一般情况下考虑黏性土作用的挡土墙被动土压力、滑裂面土反力以及它们的分布。经典库仑和朗肯被动土压力为其特例。  相似文献   

5.
建立在半无限土体假定上的朗肯土压力理论和库伦土压力理论,在挡土墙后填土有限的情况下不再适用。针对墙后无黏性填土,采用离散元方法分别对光滑、粗糙墙面平动模式下墙后有限宽度土体主动破坏的过程进行研究,分析了挡土墙运动过程中滑裂带发展、土体位移规律以及墙后水平土压力分布的情况。研究结果表明,墙体光滑情况下,滑裂带呈直线,墙后填土宽高比较小时,可以观察到滑裂带的反射,墙后土体呈多折线破坏模式,滑裂带倾角基本与库伦理论滑裂带倾角相等,且与土体宽高比无关,水平土压力合力受土体宽高比影响亦不大。墙体粗糙情况下,滑裂带呈曲线,反射现象随墙体粗糙程度增加而减弱,滑裂带倾角随土体宽高比增大而减小,最终落于库伦理论滑裂带内侧。此时,存在一临界宽高比,当墙后土体宽高比小于此值时,主动土压力随宽高比增大而增大,大于此值时,主动土压力不受宽高比影响。而无论墙体粗糙与否,墙后土体宽高比越小,达到极限状态所需墙体位移均越小。  相似文献   

6.
复杂条件下挡土墙主动土压力解析解   总被引:5,自引:0,他引:5  
基于库仑理论的平面滑裂面假设,综合考虑填土具有黏聚力和内摩擦角、挡土墙墙背和填土面均倾斜、填土与墙背间具有摩擦和黏着力、填土浅表具有张拉裂缝和表面有连续均布超载的复杂情况,采用薄层单元法,导出了作用于挡土墙上的主动土压力的解析解,可适用于黏性和无黏性填土的复杂条件;且证明现行经典朗肯理论和库仑理论主动土压力是解析解相应简化假设下的特例。多个工程实例计算均表明,公式计算结果与实测主动土压力非线性分布曲线吻合良好,因而解析解对实际工程中主动土压力的计算精度是可靠的,具有推广应用价值。  相似文献   

7.
各向异性砂土主动土压力的离心模型试验研究   总被引:1,自引:1,他引:1  
 利用新研制的土压力离心模型试验设备,通过土压力盒测量作用在挡土墙上的土压力分布,利用非接触图像测量系统(GIPS)测量土体位移,对各向异性的南京云母砂分别进行沉积面铅直和水平两个方向的土压力离心模型试验。通过对比试验得到的土压力分布与理论公式计算得到的各向同性砂土土压力分布,以及两种沉积方向的砂土的滑裂面位置,对各向异性砂土的土压力及土体变形破坏问题进行初步研究。结果表明:随着挡土墙向远离墙后填土方向运动的位移不断增大,作用在挡土墙上的土压力逐渐减小,墙后填土中各点的位移不断增大,在墙后土体中逐渐形成滑裂面。当挡土墙的位移量达到10-3H(H为试样模型高度)时,墙后填土达到主动极限平衡状态。受到片状云母颗粒排列方向的影响,沉积面铅直的土体滑裂面比沉积面水平的滑裂面略显平缓。  相似文献   

8.
刚性挡土墙非线性主动土压力分析   总被引:6,自引:1,他引:5  
挡土墙后土压力分布受许多因素影响,多数情况下为曲线型。墙后土楔体达到极限平衡状态时,滑裂面形状一般也不是平面。作者运用条分法分析曲面滑裂面下墙背直立刚性挡土墙上主动土压力分布,并同库仑土压力计算结果进行比较。可以看出,库仑主动土压力偏小,只有当挡墙面光滑时,分布才为直线型。  相似文献   

9.
长期以来,挡土墙的设计一直依据朗肯或库仑土压力理论。为得到闭合解,这些传统土压力理论均似定均质土体,实际上,土体性质是空间变化的,这样设计中就隐含两个问题:(1)取样获得的土体性质能否完全反映墙后所有填土的性质;(2)土体性质的空间差异是否会导致主动土压力与传统方法预测的结果有很大差别。本文把非线性有限元和随机场模拟结合起来,研究了这两个问题,并对目前设计方法的安全性进行了评价。本文对一个二维、墙壁光滑的挡土墙进行了实例研究,墙后是排水的无粘性填土,该挡墙用朗肯土压力理论进行滑移计算。设计所用的摩擦角和土体重度在模拟的随机场中某一位置取样获得,并被当作有效土体参数用于朗肯模型中。当修正后作用在挡土墙上的朗肯土压力小于实际土体参数的随机有限元计算结果时,挡土墙破坏。本文借助蒙特卡罗模拟方法,将传统设计方法的破坏概率用一个包含安全系数和土体空间变异性的函数评估。  相似文献   

10.
挡土墙后的土侧压力必须按照挡土墙在土压力作用下的可能位移情况来区别对待。当挡土墙在土压力作用下有位移时,随着位移的增大,墙后土压力将逐渐减少,当位移达到一定数值时,土体内出现滑裂面,墙后填土达到主动极限平衡状态,此时作用在挡土墙上的土压力为主动土压力。  相似文献   

11.
In urban construction, retaining walls are usually constructed adjacent to existing structures, and the width of the backfill is limited. In such cases, classical earth pressure theories, such as those by Coulomb or Rankine, are unsuitable. The active earth pressure acting on the retaining wall of a narrow backfill under the translation mode was explored in this study using a finite element limit analysis. The results show that due to the boundary conditions, reflective shear bands occur in the backfill when it is failing. The number of reflective shear bands is determined. Moreover, a theoretical method is proposed using the limit equilibrium method to estimate the active earth pressure acting on the retaining wall of the narrow backfill. The influence of the parameters on the failure mechanisms and the active earth pressure is also discussed.  相似文献   

12.
地震作用下挡土墙动土压力分布研究   总被引:1,自引:0,他引:1  
自日本学者Mononobe、Matuo和Okabe首先提出了基于Coulomb土压力理论的静力方法——物部-冈部(M-O)公式后,国内外学者就挡土墙地震土压力理论和模型试验进行了很多研究,并取得了很多成果。在简要地对挡土墙在地震作用下的破坏形式、地震土压力分布的研究进展和地震土压力分布的研究趋势进行总结后,对其发展方向进行了分析和讨论。  相似文献   

13.
考虑土拱效应的黏性填土挡土墙主动土压力研究   总被引:3,自引:0,他引:3  
 以墙后填土为黏性土的刚性挡土墙为研究对象,考虑挡土墙后的土拱效应,以及墙土摩擦角、墙土黏结力、墙后填土黏聚力的影响,推导挡土墙在平动模式下的主动土压力系数和主动土压力解析解。结果表明,考虑土拱效应的主动土压力系数和主动土压力均与墙土摩擦角、计算点深度以及墙后填土的内摩擦角、黏聚力及重度有关。通过将求解的主动土压力系数和主动土压力与现有经典理论解及前人理论研究成果对比,发现结果完全吻合,验证该研究结果的正确性。  相似文献   

14.
平移模式下挡墙非极限土压力计算方法   总被引:2,自引:0,他引:2  
在考虑挡墙平动位移效应和内摩擦角折减系数的基础上,利用薄层斜条分法,提出墙后填土为无黏性土时挡墙非极限主动和被动土压力计算公式。为验证该方法的可行性,对平移模式下挡墙进行主动和被动土压力模型试验,并利用该方法对2个模型试验进行计算分析。试验及计算结果均表明:不同s/sc比值情况下,主动土压力随深度增加表现出先增大后减小的趋势,且在0.6H(H为挡土墙高度)位置与库仑土压力曲线出现交点;被动土压力沿深度非线性增大,但其值均小于库仑被动土压力值;主动土压力合力作用点位置均高于库仑土压力合力作用点,而被动土压力合力作用点位置均低于库伦土压力合力作用点,并且随着s/sc比值的提高差距越大。  相似文献   

15.
加筋挡土墙在二维超静孔压下的稳定分析   总被引:3,自引:0,他引:3  
当加筋挡土墙后填土为粘性土时,在其中可能会产生超静孔隙水压力.超静孔压的存在使其土压力的大小及分布、潜在滑裂面的位置都有所改变.一维孔压分布情况下朗肯理论仍能适用.但在二维孔压分布情况下,用朗肯理论进行计算就不合适.本文推荐采用图解法计算墙后土压力,用圆弧滑动法进行稳定校核.对二维正孔压分布和基坑支护结构上负孔压分布的情况都做了探讨.  相似文献   

16.
传统的Mononobe-Okabe法在实际工程中有着广泛应用,但它仅适用于无黏性土的极限土压力计算,且不能给出土压力分布。基于极限平衡理论,视墙后填土为服从Mohr-Coulomb屈服准则的理想弹塑性材料,假定墙后塑性区的一簇滑移线为直线即平面滑裂面,考虑墙背倾角、地面倾角、土黏聚力和内摩擦角、墙土之间黏结力和外摩擦角、地面均布超载、塑性临界深度以及水平和竖向地震系数等因素的影响,建立较为完善的塑性滑楔分析模型,进而采用极限平衡法求解挡土墙地震主动土压力、滑裂面土反力及其分布,并且通过量纲一化的分析首次提出几何力学相似原理。研究结果表明,总地震主动土压力随水平地震系数代数值的增大而增大;但随竖向地震系数代数值的增大并非总是减小,当水平地震系数较大时,可能出现先减后增的情况。  相似文献   

17.
墙后有限宽度无黏性土主动土压力试验研究   总被引:2,自引:0,他引:2  
针对无黏性土体,开展了刚性挡墙平动、绕墙底转动和绕墙顶转动3种墙体主动变位模式情况下墙后有限宽度土体土压力试验。通过观察墙后不同宽度土体的破坏过程及对土压力的全程量测,对其破坏模式及土压力分布规律进行了探讨。试验结果表明,墙后有限宽度土体的破坏面为一连续曲面,随着墙后土体宽度的增加,土体破坏面逐渐向外侧偏移,最终趋于某一固定位置,但始终位于库仑破坏面内侧。土压力值监测表明,库仑土压力理论并不适用于有限宽度土体。当填土宽度为有限宽度时,土压力值小于库仑主动土压力值,其差距随土体宽度减小而逐渐增大。当墙体平动时,土压力值沿墙高先增大后减小;墙体绕墙底转动时土压力值则呈线性增长趋势;而当墙体绕墙顶转动时,在挡墙上部出现了明显的土拱效应。  相似文献   

18.
根据土体微分单元体的静力平衡条件,建立了挡土墙绕墙顶转动情况下被动土压力分布的计算表达式,同时进行了被动土压力分布、合力及作用点与库仑土压力、实测结果的分析比较。结果表明:该公式很好地反映了实测曲线的非线性分布,同时被动土压力合力与库仑被动土压力基本相同,合力作用点接近于0.27倍墙高处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号