首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a variety of solar cells, it is shown that the single exponential $J{-}V$ model parameters, namely—ideality factor $eta$ , parasitic series resistance $R_{s}$, parasitic shunt resistance $R_{rm sh}$, dark current $J_{0}$, and photogenerated current $J_{rm ph}$ can be extracted simultaneously from just four simple measurements of the bias points corresponding to $V_{rm oc}$, $sim!hbox{0.6}V_{rm oc}$, $J_{rm sc}$, and $sim! hbox{0.6}J_{rm sc}$ on the illuminated $J{-}V$ curve, using closed-form expressions. The extraction method avoids the measurements of the peak power point and any $dJ/dV$ (i.e., slope). The method is based on the power law $J{-}V$ model proposed recently by us.   相似文献   

2.
Several fully-integrated multi-stage lumped-element quadrature hybrids that enhance bandwidth, amplitude and phase accuracies, and robustness are presented, and a fully-integrated double-quadrature heterodyne receiver front-end that uses two-stage Lange/Lange couplers is described. The Lange/Lange cascade exploits the inherent wide bandwidth characteristic of the Lange hybrid and enables a robust design using a relatively low transformer coupling coefficient. The measured image-rejection ratio is $>$ 55 dB over a 200 MHz bandwidth centered around 5.25 $~$GHz without any tuning, trimming, or calibration; the front-end features 23.5 dB gain, $-$79 dBm sensitivity, 5.6 dB SSB NF, $-$7$~$ dBm IIP3, $-$18 dB $S_{11}$ and a 1 mm $times$ 2 mm die area in 0.18$ mu{hbox {m}}$ CMOS.   相似文献   

3.
A process-independent adaptive bandwidth spread-spectrum clock generator (SSCG) with digitally controlled self-calibration techniques is proposed. By adaptively calibrating the VCO gain ($K_v$) and charge-pump (CP) current over C ($I_{CP}/C$), the SSCG can realize not only adaptive bandwidth but also process independence at each operating frequency. The innovative point is the adaptive bandwidth control using $K_v$ and $I_{CP}/C$ calibration. This control enabled a test chip to keep a sharp triangular SSC profile while operating over a wide frequency range (125 to 1250 $~$MHz). The variations of VCO gain and CP current are reduced to one third those of the conventional architecture. At 1250 $~$Mbps (625$~$MHz) the reduction of spectrum peak amplitude is 18.6$~$dB which is 2.3$~$dB better than the reduction obtained without calibration.   相似文献   

4.
This paper presents the design and the characterization of a CMOS avalanche photodiode (APD) working as an optoelectronic mixer. The $hbox{P}^{+}hbox{N}$ photodiode has been implemented in a commercial 0.35-$muhbox{m}$ CMOS technology after optimization with SILVACO. The surface of the active region is $ hbox{3.78} cdot hbox{10}^{-3} hbox{cm}^{2}$. An efficient guard-ring structure has been created using the lateral diffusion of two n-well regions separated by a gap of 1.2 $mu hbox{m}$. When biased at $-$2 V, the best responsitivity $S_{lambda ,{rm APD}} = hbox{0.11} hbox{A/W}$ is obtained at $lambda = hbox{500} hbox{nm}$. This value can easily be improved by using an antireflection coating. At $lambda = hbox{472} hbox{nm}$, the internal gain is about 75 at $-$6 V and 157 at $-$7 V. When biased at $-$6 V, the APD achieves a dark current of 128 $muhbox{A} cdot hbox{mm}^{-2}$ and an excess noise factor $F = hbox{20}$ . Then, the APD is successfully used as an optoelectronic mixer to improve the signal-to-noise ratio of a low-voltage embedded phase-shift laser rangefinder.   相似文献   

5.
A compact broadband 8-way Butler matrix integrated with tunable phase shifters is proposed to provide full beam switching/steering capability. The newly designed multilayer stripline Butler matrix exhibits an average insertion loss of 1.1 dB with amplitude variation less than $pm$2.2 dB and an average phase imbalance of less than 20.7$^{circ}$ from 1.6 GHz to 2.8 GHz. The circuit size is only $160times 100 {rm mm}^{2}$, which corresponds to an 85% size reduction compared with a comparable conventional microstrip 8-way Butler matrix. The stripline tunable phase shifter is designed based on the asymmetric reflection-type configuration, where a Chebyshev matching network is utilized to convert the port impedance from 50 $Omega$ to 25 $Omega$ so that a phase tuning range in excess of 120$^{circ}$ can be obtained from 1.6 GHz to 2.8 GHz. To demonstrate the beam switching/steering functionality, the proposed tunable Butler matrix is applied to a 1 $times$ 8 antenna array system. The measured radiation patterns show that the beam can be fully steered within a spatial range of 108 $^{circ}$.   相似文献   

6.
Ultra-compact phase shifters are presented. The proposed phase-shifting circuits utilize the lumped element all-pass networks. The transition frequency of the all-pass network, which determines the size of the circuit, is set to be much higher than the operating frequency. This results in a significantly small chip size of the phase shifter. To verify this methodology, 5-bit phase shifters have been fabricated in the $S$ - and $C$ -band. The $S$ -band phase shifter, with a chip size of 1.87 mm $,times,$0.87 mm (1.63 mm $^{2}$), has achieved an insertion loss of ${hbox{6.1 dB}} pm {hbox{0.6 dB}}$ and rms phase-shift error of less than 2.8$^{circ}$ in 10% bandwidth. The $C$ -band phase shifter, with a chip size of 1.72 mm $,times,$0.81 mm (1.37 mm $^{2}$), has demonstrated an insertion loss of 5.7 dB $pm$ 0.8 dB and rms phase-shift error of less than 2.3 $^{circ}$ in 10% bandwidth.   相似文献   

7.
We provide the first report of the structural and electrical properties of $hbox{TiN/ZrO}_{2}$/Ti/Al metal–insulator–metal capacitor structures, where the $hbox{ZrO}_{2}$ thin film (7–8 nm) is deposited by ALD using the new zirconium precursor ZrD-04, also known as Bis(methylcyclopentadienyl) methoxymethyl. Measured capacitance–voltage ($C$$V$) and current–voltage ( $I$$V$) characteristics are reported for premetallization rapid thermal annealing (RTP) in $hbox{N}_{2}$ for 60 s at 400 $^{circ}hbox{C}$, 500 $^{circ}hbox{C}$, or 600 $^{ circ}hbox{C}$. For the RTP at 400 $^{circ}hbox{C}$ , we find very low leakage current densities on the order of nanoamperes per square centimeter at a gate voltage of 1 V and low capacitance equivalent thickness values of $sim$ 0.9 nm at a gate voltage of 0 V. The dielectric constant of $ hbox{ZrO}_{2}$ is 31 $pm$ 2 after RTP treatment at 400 $^{circ}hbox{C}$.   相似文献   

8.
It is a well-known property in Fourier transform magnetic resonance imaging (MRI) that rigid body translational motion in image space results in linear phase accumulation in $k$ -space. This work describes Multiple Overlapping $k$-space Junctions for Investigating Translating Objects (MOJITO), a correction scheme based on phase differences at trajectory intersections caused by 2-D alterations in the position of an object during MR imaging. The algorithm allows both detection and correction of motion artifacts caused by 2-D rigid body translational motion. Although similar in concept to navigator echoes, MOJITO does not require a repeating path through $k$-space, uses $k$-space data from a broader region of $k$ -space, and uses the repeated data in image reconstruction; this provides the potential for a highly efficient self-navigating motion correction method. Here, the concept and theoretical basis of MOJITO is demonstrated using the continuous sampling BOWTIE trajectory in simulation and MR experiments. This particular trajectory is selected since it is well suited for such an algorithm due to numerous trajectory intersections. Specifically, the validity of the technique in the presence of noise and off-resonance effects is demonstrated through simulation.   相似文献   

9.
The extraction of the effective mobility on $hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}$ metal–oxide–semiconductor field-effect transistors (MOSFETs) is studied and shown to be greater than 3600 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$. The removal of $C_{rm it}$ response in the split $C$$V$ measurement of these devices is crucial to the accurate analysis of these devices. Low-temperature split $C$$V$ can be used to freeze out the $D_{rm it}$ response to the ac signal but maintain its effect on the free carrier density through the substrate potential. Simulations that match this low-temperature data can then be “warmed up” to room temperature and an accurate measure of $Q_{rm inv}$ is achieved. These results confirm the fundamental performance advantages of $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ MOSFETs.   相似文献   

10.
High-electron mobility transistors (HEMTs) based on ultrathin AlN/GaN heterostructures with a 3.5-nm AlN barrier and a 3-nm $hbox{Al}_{2}hbox{O}_{3}$ gate dielectric have been investigated. Owing to the optimized AlN/GaN interface, very high carrier mobility $(sim!!hbox{1400} hbox{cm}^{2}/hbox{V}cdothbox{s})$ and high 2-D electron-gas density $(sim!!kern1pthbox{2.7} times hbox{10}^{13} /hbox{cm}^{2})$ resulted in a record low sheet resistance $(sim !!hbox{165} Omega/hbox{sq})$. The resultant HEMTs showed a maximum dc output current density of $simkern1pt$2.3 A/mm and a peak extrinsic transconductance $g_{m,{rm ext}} sim hbox{480} hbox{mS/mm}$ (corresponding to $g_{m,{rm int}} sim hbox{1} hbox{S/mm}$). An $f_{T}/f_{max}$ of 52/60 GHz was measured on $hbox{0.25} times hbox{60} muhbox{m}^{2}$ gate HEMTs. With further improvements of the ohmic contacts, the gate dielectric, and the lowering of the buffer leakage, the presented results suggest that, by using AlN/GaN heterojunctions, it may be possible to push the performance of nitride HEMTs to current, power, and speed levels that are currently unachievable in AlGaN/GaN technology.   相似文献   

11.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

12.
We have achieved a 9- $muhbox{m}$-thick AlGaN/GaN high-electron mobility transistor (HEMT) epilayer on silicon using thick buffer layers with reduced dislocation density $(D_{D})$. The crack-free 9- $muhbox{m}$-thick epilayer included 2- $muhbox{m}$ i-GaN and 7- $ muhbox{m}$ buffer. The HEMTs fabricated on these devices showed a maximum drain–current density of 625 mA/mm, transconductance of 190 mS/mm, and a high three-terminal OFF breakdown of 403 V for device dimensions of $L_{g}/W_{g}/L_{rm gd} = hbox{1.5/15/3} muhbox{m}$ . Without using a gate field plate, this is the highest $BV$ reported on an AlGaN/GaN HEMT on silicon for a short $L_{rm gd}$ of 3 $muhbox{m}$. A very high $BV$ of 1813 V across 10- $mu hbox{m}$ ohmic gap was achieved for i-GaN grown on thick buffers. As the thickness of buffer layers increased, the decreased $D_{D}$ of GaN and increased resistance between surface electrode and substrate yielded a high breakdown.   相似文献   

13.
It is demonstrated that $hbox{HfO}_{2}$ films can have much higher dielectric-constant values than the usual reported value of 20–24 by optimized incorporation of lanthanum element and crystallization to cubic structure. When $hbox{HfO}_{2}$ with 8% La is crystallized into cubic structure, the film exhibits the $kappa$ value of $sim$ 38 which is the highest among ever reported $hbox{HfO}_{2}$ -based high-$kappa$ dielectrics. The increased $kappa$ value of $ hbox{HfO}_{2}$ with 8% La enables the leakage current to be reduced more than one order of magnitude lower, compared to amorphous-phase $hbox{HfO}_{2}$ under the same electric field. The dependence of film thickness and annealing temperature on the cubic crystallization is also reported.   相似文献   

14.
In this paper, we show that Sudoku puzzles can be formulated and solved as a sparse linear system of equations. We begin by showing that the Sudoku ruleset can be expressed as an underdetermined linear system: ${mmb{Ax}}={mmb b}$, where ${mmb A}$ is of size $mtimes n$ and $n>m$. We then prove that the Sudoku solution is the sparsest solution of ${mmb{Ax}}={mmb b}$, which can be obtained by $l_{0}$ norm minimization, i.e. $minlimits_{mmb x}Vert{mmb x}Vert_{0}$ s.t. ${mmb{Ax}}={mmb b}$. Instead of this minimization problem, inspired by the sparse representation literature, we solve the much simpler linear programming problem of minimizing the $l_{1}$ norm of ${mmb x}$, i.e. $minlimits_{mmb x}Vert{mmb x}Vert_{1}$ s.t. ${mmb{Ax}}={mmb b}$, and show numerically that this approach solves representative Sudoku puzzles.   相似文献   

15.
We propose an equivalent circuit model for the post-breakdown (BD) current–voltage ( $I$$V$) characteristics in $hbox{HfO}_{2}/hbox{TaN/TiN}$ gate stacks in n-MOSFETs. The model consists of two opposite-biased diodes with series resistances and a shunt leakage path. The circuit admits analytical solution using the Lambert $W$-function and is tested for both negative and positive gate biases in the voltage range of $-$1.5 to $+$1.5 V. We also show the versatility of the proposed approach to deal with the post-BD $I$$V$ when source and drain contacts are grounded or floating and analyze the obtained results in terms of the charge available for conduction.   相似文献   

16.
A graphene nanoribbon (GNR) tunnel field-effect transistor (TFET) is proposed and modeled analytically. Ribbon widths between 3 and 10 nm are considered to effect energy bandgaps in the range of 0.46 to 0.14 eV. It is shown that a 5-nm ribbon width TFET can switch from on to off with only 0.1-V gate swing. The transistor achieves 800 $muhbox{A}/muhbox{m}$ on -state current and 26 $hbox{pA}/muhbox{m}$ off-state current, with an effective subthreshold swing of 0.19 mV/dec. Compared to a projected 2009 $n$MOSFET, the GNR TFET can provide 5$times$ higher speed, 20$ times$ lower dynamic power, and 280 000$times$ lower off-state power dissipation. The high performance of GNR TFETs results from their narrow bandgaps and their 1-D nature.   相似文献   

17.
The theoretical calculation of transient electron velocity overshoot in wurtzite $c$-axis GaN indicates a higher transient overshoot peak for transport in the basal plane ( $Gammahbox{-}M$ and $Gamma hbox{-}K$) than along the growth direction ($Gammahbox{-}A$ ). Characteristic rise times for the transient overshoot peak are found to be shorter for transport along the $c$-axis. Stationary electron velocity is significantly larger for transport oriented in the basal plane than along the $c$ -axis. No significant anisotropy is observed, however, in either the transient or steady-state electron velocity as a function of field orientation within the basal plane itself. The higher peak transient and stationary velocities in the basal plane are directly attributable to the anisotropy of the electronic dispersion, which exhibits lower effective mass along the $Gammahbox{-}M$ and $Gammahbox{-}K$ directions and greater nonparabolicity along the $Gammahbox{-}A$ direction.   相似文献   

18.
The design of a 100 kHz frequency reference based on the electron mobility in a MOS transistor is presented. The proposed low-voltage low-power circuit requires no off-chip components, making it suitable for application in wireless sensor networks (WSN). After a single-point calibration, the spread of its output frequency is less than 1.1% (3$sigma $) over the temperature range from $-{hbox{22}},^{circ}{hbox{C}}$ to 85$,^{circ}{hbox{C}}$ . Fabricated in a baseline 65$~$nm CMOS technology, the frequency reference circuit occupies 0.11$ hbox{mm}^{2}$ and draws 34 $ muhbox{A}$ from a 1.2 V supply at room temperature.   相似文献   

19.
We present a detailed experimental and theoretical study of the ultrahigh repetition rate AO $Q$ -switched ${rm TEM}_{00}$ grazing incidence laser. Up to 2.1 MHz $Q$-switching with ${rm TEM}_{00}$ output of 8.6 W and 2.2 MHz $Q$ -switching with multimode output of 10 W were achieved by using an acousto-optics $Q$ -switched grazing-incidence laser with optimum grazing-incidence angle and cavity configuration. The crystal was 3 at.% neodymium doped Nd:YVO$_{4}$ slab. The pulse duration at 2 MHz repetition rate was about 31 ns. The instabilities of pulse energy at 2 MHz repetition rate were less than ${pm}6.7hbox{%}$ with ${rm TEM}_{00}$ operation and ${pm}3.3hbox{%}$ with multimode operation respectively. The modeling of high repetition rate $Q$-switched operation is presented based on the rate equation, and with the solution of the modeling, higher pump power, smaller section area of laser mode, and larger stimulated emission cross section of the gain medium are beneficial to the $Q$-switched operation with ultrahigh repetition rate, which is in consistent with the experimental results.   相似文献   

20.
The pulsed current–voltage ($I$$V$) measurement technique with pulse times ranging from $sim$17 ns to $sim$ 6 ms was employed to study the effect of fast transient charging on the threshold voltage shift $Delta V_{t}$ of MOSFETs. The extracted $Delta V_{t}$ values are found to be strongly dependent on the band bending of the dielectric stack defined by the high-$kappa$ and interfacial layer dielectric constants and thicknesses, as well as applied voltages. Various hafnium-based gate stacks were found to exhibit a similar trap density profile.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号