首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
For SiGe/Si(001) epitaxial structures with two nonequivalent SiGe quantum wells separated by a thin Si barrier, the spectral and time characteristics of interband photoluminescence corresponding to the radiative recombination of excitons in quantum wells are studied. For a series of structures with two SiGe quantum wells different in width, the characteristic time of tunneling of charge carriers (holes) from the narrow quantum well, distinguished by a higher exciton recombination energy, to the wide quantum well is determined as a function of the Si barrier thickness. It is shown that the time of tunneling of holes between the Si0.85Ge0.15 layers with thicknesses of 3 and 9 nm steadily decreases from ~500 to <5 ns, as the Si barrier thickness is reduced from 16 to 8 nm. At intermediate Si barrier thicknesses, an increase in the photoluminescence signal from the wide quantum well is observed, with a characteristic time of the same order of magnitude as the luminescence decay time of the narrow quantum well. This supports the observation of the effect of the tunneling of holes from the narrow to the wide quantum well. A strong dependence of the tunneling time of holes on the Ge content in the SiGe layers at the same thickness of the Si barrier between quantum wells is observed, which is attributed to an increase in the effective Si barrier height.  相似文献   

2.
This paper presents the successful use of ZnS/ZnMgS and other II–VI layers (lattice-matched or pseudomorphic) as high-k gate dielectrics in the fabrication of quantum dot (QD) gate Si field-effect transistors (FETs) and nonvolatile memory structures. Quantum dot gate FETs and nonvolatile memories have been fabricated in two basic configurations: (1) monodispersed cladded Ge nanocrystals (e.g., GeO x -cladded-Ge quantum dots) site-specifically self-assembled over the lattice-matched ZnMgS gate insulator in the channel region, and (2) ZnTe-ZnMgTe quantum dots formed by self-organization, using metalorganic chemical vapor-phase deposition (MOCVD), on ZnS-ZnMgS gate insulator layers grown epitaxially on Si substrates. Self-assembled GeO x -cladded Ge QD gate FETs, exhibiting three-state behavior, are also described. Preliminary results on InGaAs-on-InP FETs, using ZnMgSeTe/ZnSe gate insulator layers, are presented.  相似文献   

3.
Multistate behavior has been achieved in quantum dot gate field-effect transistor (QDGFET) configurations using either SiO x -cladded Si or GeO x -cladded Ge quantum dots (QDs) with asymmetric dot sizes. An alternative method is to use both SiO x -cladded Si and GeO x -cladded Ge QDs in QDGFETs. In this paper, we present experimental verification of four-state behavior observed in a QDGFET with cladded Si and Ge dots site-specifically self-assembled in the gate region over a thin SiO2 tunnel layer on a Si substrate. This paper also investigates the use of lattice-matched high-κ ZnS-ZnMgS-ZnS layers as a gate insulator in mixed-dot Si QDGFETs. Quantum-mechanical simulation of the transfer characteristic (I DV G) shows four-state behavior with two intermediate states between the conventional ON and OFF states.  相似文献   

4.
Spectra of lateral photoconductivity of multilayer Ge/Si structures with Ge quantum dots, fabricated by molecular-beam epitaxy are studied. The photoresponse caused by optical transitions between hole levels of quantum dots and Si electronic states was observed in the energy range of 1.1–0.3 eV at T = 78 K. It was shown that the electronic states localized in the region of Si band bending near the Ge/Si interface mainly contribute to lateral photoconductivity. The use of the quantum box model for describing hole levels of quantum dots made it possible to understand the origin of peaks observed in the photoconductivity spectra. A detailed energy-level diagram of hole levels of quantum dots and optical transitions in Ge/Si structures with strained Ge quantum dots was constructed.  相似文献   

5.
Three-state behavior has been demonstrated in Si and InGaAs field-effect transistors (FETs) when two layers of cladded quantum dots (QDs), such as SiO x -cladded Si or GeO x -cladded Ge, are assembled on the thin tunnel gate insulator. This paper describes FET structures that have the potential to exhibit four states. These structures include: (1) quantum dot gate (QDG) FETs with dissimilar dot layers, (2) quantum dot channel (QDC) with and without QDG layers, (3) spatial wavefunction switched (SWS) FETs with multiple coupled quantum well channels, and (4) hybrid SWS–QDC structures having multiple drains/sources. Four-state FETs enable compact low-power novel multivalued logic and two-bit memory architectures. Furthermore, we show that the performance of these FETs can be enhanced by the incorporation of II–VI nearly lattice-matched layers in place of gate oxides and quantum well/dot barriers or claddings. Lattice-matched high-energy gap layers cause reduction in interface state density and control of threshold voltage variability, while providing a higher dielectric constant than SiO2. Simulations involving self-consistent solutions of the Poisson and Schrödinger equations, and transfer probability rate from channel (well or dot layer) to gate (QD layer) are used to design sub-12-nm FETs, which will aid the design of multibit logic and memory cells.  相似文献   

6.
In recent years, quantum dots have been successfully grown by self-assembling processes. For optoelectronic device applications, the quantum-dot structures have advantages such as reduced phonon scattering, longer carrier lifetime, and lower detector noise due to low-dimensional confinement effect. Comparing to traditional optoelectronic III-V and other materials, self-assembled Ge quantum dots grown on Si substrates have a potential to be monolithically integrated with advanced Si-based technology. In this paper, we describe the growth of self-assembled, guided Ge quantum dots, and Ge quantum-dot superlattices on Si. For dot growth, issues such as growth conditions and their effects on the dot morphology are reviewed. Then vertical correlation and dot morphology evolution are addressed in relation to the critical thickness of Ge quantum-dot superlattices. In addition, we also discuss the quantum-dot p-i-p photodetectors (QDIPs) and n-i-n photodetectors for mid-infrared applications, and the quantum-dot p-i-n photodetectors for 1.3-1.55 mum for communications applications. The wavelength of SiGe p-i-p QDIP can be tuned by the size as grown by various patterning methods. Photoresponse is demonstrated for an n-i-n structure in both the mid-infrared and far-infrared wavelength ranges. The p-i-n diodes exhibit low dark current and high quantum efficiency. The characteristics of fabricated light-emitting diode (LED) devices are also discussed, and room-temperature electroluminescence is observed for Ge quantum-dot LED. The results indicate that Ge dot materials are potentially applicable for mid-infrared (8-12 mum) detectors as well as fiber-optic (1.3-1.55 mum) communications.  相似文献   

7.
采用离子束溅射技术,在生长了Si缓冲层的硅晶片上制备了一系列Ge量子点样品.借助原子力显微镜(AFM)和Raman光谱等测试手段研究了Ge/Si量子点生长密度、尺寸及排列均匀性的演变规律.结果表明,改变Si缓冲层厚度及其生长方式,可以有效控制量子点的尺寸、均匀性和密度.随缓冲层厚度增大,量子点密度先增大后减小,停顿生长有利于提高缓冲层结晶性,从而提高量子点的密度,可以达到1.9×1010 cm-2.还研究了Si缓冲层在Ge量子点生长过程中的作用,并提出了量子点的生长模型.  相似文献   

8.
This paper presents preliminary data on quantum dot gate nonvolatile memories using nearly lattice-matched ZnS/Zn0.95Mg0.05S/ZnS tunnel insulators. The GeO x -cladded Ge and SiO x -cladded Si quantum dots (QDs) are self-assembled site-specifically on the II–VI insulator grown epitaxially over the Si channel (formed between the source and drain region). The pseudomorphic II–VI stack serves both as a tunnel insulator and a high-κ dielectric. The effect of Mg incorporation in ZnMgS is also investigated. For the control gate insulator, we have used Si3N4 and SiO2 layers grown by plasma- enhanced chemical vapor deposition.  相似文献   

9.
采用MOCVD方法制备了ZnCdSe量子阱/CdSe量子点耦合结构,利用低温(5K)光致发光光谱和变密度发光光谱研究了该结构中的激子隧穿和复合. 观察到在该结构中存在由量子阱到量子点的激子隧穿现象. 改变垒层厚度会对量子阱和量子点的发光产生显著影响. 在垒层较薄的阱/点耦合结构中,隧穿效应可以有效地抑制量子阱中的带填充和饱和效应.  相似文献   

10.
From studies of two-phase systems (borosilicate matrices containing ZnSe or CdS quantum dots), it was found that the systems exhibit a specific feature associated with the percolation phase transition of charge carriers (excitons). The transition manifests itself as radical changes in the optical spectra of both ZnSe and CdS quantum dot systems and by fluctuations of the emission band intensities near the percolation threshold. These effects are due to microscopic fluctuations of the density of quantum dots. The average spacing between quantum dots is calculated taking into account their finite dimensions and the volume fraction occupied by the quantum dots at the percolation threshold. It is shown that clustering of quantum dots occurs via tunneling of charge carriers between the dots. A physical mechanism responsible for the percolation threshold for charge carriers is suggested. In the mechanism, the permittivity mismatch of the materials of the matrix and quantum dots plays an important role in delocalization of charge carriers (excitons): due to the mismatch, “a dielectric trap” is formed at the external surface of the interface between the matrix and a quantum dot and, thus, surface exciton states are formed there. The critical concentrations of quantum dots are determined, such that the spatial overlapping of such surface states provides the percolation transition in both systems.  相似文献   

11.
The results of studies of the optical absorption spectra in Ge/Si quantum dot structures in the mid-infrared region are reported. Two types of structures different in terms of the method used for quantum dot formation and in terms of barrier layer thickness are explored. The photoinduced absorption associated with the nonequilibrium population of hole states and optical absorption in structures doped to different levels are investigated. Specific features that are associated with occupation of the ground and excited states of quantum dots and exhibit a polarization dependence are observed. From the experimental data, the energy spectrum of holes is determined for structures of both types.  相似文献   

12.
This paper deals with the theoretical and experimental study of radiative processes in zero-dimensional Si and Ge nanostructures consisting of a system of Si or Ge nanocrystals embedded in an Al2O3 matrix. The Al2O3 films containing Si or Ge quantum dots were produced by pulsed laser-assisted deposition. The timeresolved photoluminescence spectra of the films were recorded in the energy range from 1.4 to 3.2 eV in the range of photoluminescence relaxation times between 50 ns and 20 μs. The exciton binding energy and the energy of radiative excitonic transitions are calculated, taking into account the finite barrier height and the polarization of heterointerfaces. In addition, the excitonic photoluminescence spectra are calculated, taking into account the effect of quantum mesoscopic fluctuations and the possible nonmonotonically varying dependence of the radiative zero-phonon lifetime of excitons on the dimensions of the quantum dots. The observed agreement between the calculated and recorded photoluminescence spectra confirms the excitonic nature of photoluminescence and provides a means for the determination of the model parameters of photoluminescence in the nanostructures.  相似文献   

13.
This paper presents the three-state behavior of quantum dot gate field-effect transistors (FETs). GeO x -cladded Ge quantum dots (QDs) are site-specifically self-assembled over lattice-matched ZnS-ZnMgS high-κ gate insulator layers grown by metalorganic chemical vapor deposition (MOCVD) on silicon substrates. A model of three-state behavior manifested in the transfer characteristics due to the quantum dot gate is also presented. The model is based on the transfer of carriers from the inversion channel to two layers of cladded GeO x -Ge quantum dots.  相似文献   

14.
Longitudinal photoconductivity spectra of Si/Ge multilayer structures with Ge quantum dots grown pseudomorphically to the Si matrix are studied. Lines of optical transitions between hole levels of quantum dots and Si electronic states are observed. This allowed us to construct a detailed energy-level diagram of electron-hole levels of the structure. It is shown that hole levels of pseudomorphic Ge quantum dots are well described by the simplest “quantum box” model using actual sizes of Ge islands. The possibility of controlling the position of the long-wavelength photosensitivity edge by varying the growth parameters of Si/Ge structures with Ge quantum dots is determined.  相似文献   

15.
The recharging of many-hole and few-electron quantum dots under the conditions of the ballistic transport of single charge carriers inside self-assembled quantum well structures on a Si (100) surface are studied using local tunneling spectroscopy at high temperatures (up to room temperature). On the basis of measurements of the tunneling current-voltage characteristics observed during the transit of single charge carriers through charged quantum dots, the modes of the Coulomb blockade, Coulomb conductivity oscillations, and electronic shell formation are identified. The tunneling current-voltage characteristics also show the effect of quantum confinement and electron-electron interaction on the characteristics of single-carrier transport through silicon quantum wires containing weakly and strongly coupled quantum dots.  相似文献   

16.
Admittance spectroscopy is used to determine the cross sections and energy levels of holes in Ge/Si heterostructures with Ge quantum dots. The structures are grown by molecular-beam epitaxy. It is established that, in layers of quantum dots produced at low growth temperatures T g ≤ 450°C, the capture cross section for hole trapping into quantum dots exponentially increases with increasing hole binding energy (the Meyer-Neldel rule), with the same characteristic energy ~25 eV independent of T g . It is shown that the Meyer-Neldel rule is violated in structures grown at higher temperatures or in samples treated in hydrogen plasma. In the case of nanoclusters synthesized at low temperatures, the experimental results suggest that charge-carrier trapping into Ge quantum dots proceeds via the electron-phonon mechanism with the participation of structural defects.  相似文献   

17.
The spectral dependences of the lateral photoconductivity of Ge/Si heterostructures with Ge quantum dots are studied. The photoresponse of the Ge/Si structures with Ge nanoclusters is detected in the range 1.0–1.1 eV at T = 290 K, whereas the photocurrent in the single-crystal Si substrate is found to be markedly suppressed. This result can be attributed to the effect of elastic strains induced in the structure on the optical absorption of Si. At temperatures below 120 K, the heterostructures exhibit photosensitivity in the spectral range 0.4–1.1 eV, in which the Si single crystal is transparent. The photocurrent in this range is most likely due to the transitions of holes from the ground states localized in the quantum dots to the extended states of the valence band.  相似文献   

18.
The electronic structure of spatially indirect excitons, multiparticle excitonic complexes, and negative photoconductivity in arrays of Ge/Si type-II quantum dots (QDs) are considered. A comparison is made with the well-known results for type-II III-V and II-VI QD heterostructures. The following fundamental physical phenomena are observed in the structures under study: an increase in the exciton binding energy in QDs as compared with that for free excitons in homogeneous bulk materials, a blue shift in the excitonic transitions during the generation of multiparticle complexes (charged excitons, biexcitons), and the capture of equilibrium carriers to localized states induced by the electric ield of charged QDs.  相似文献   

19.
This paper reports the successful use of ZnSe/ZnS/ZnMgS/ZnS/ZnSe as a gate insulator stack for an InGaAs-based metal–oxide–semiconductor (MOS) device, and demonstrates the threshold voltage shift required in nonvolatile memory devices using a floating gate quantum dot layer. An InGaAs-based nonvolatile memory MOS device was fabricated using a high-κ II–VI tunnel insulator stack and self-assembled GeO x -cladded Ge quantum dots as the charge storage units. A Si3N4 layer was used as the control gate insulator. Capacitance–voltage data showed that, after applying a positive voltage to the gate of a MOS device, charges were being stored in the quantum dots. This was shown by the shift in the flat-band/threshold voltage, simulating the write process of a nonvolatile memory device.  相似文献   

20.
Al含量对GaN/AlxGa1-xN量子点中激子态的影响   总被引:13,自引:1,他引:12  
利用有效质量方法和变分原理,考虑内建电场和量子点的三维约束效应,研究了Al含量对局域在GaN/AlxGa1-xN量子点中激子性质的影响.结果表明,随着Al含量的增加,GaN/AlxGa1-xN异质界面处的导带不连续性增强,势垒变高,载流子受到的约束增强,激子结合能增加,电子空穴的复合率先增大后减小,且存在最大值.对给定体积的量子点,随其高度的变化激子结合能存在最大值,相应的电子空穴被最有效约束,激子态最稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号