首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Field‐effect transistors based on conjugated polymers are being developed for large‐area electronic applications on flexible substrates, but they also provide a very useful tool to probe the charge transport physics of these complex materials. In this review we discuss recent progress in polymer semiconductor materials, which have brought the performance and mobility of polymer devices to levels comparable to that of small‐molecule organic semiconductors. These new materials have also enabled deeper insight into the charge transport physics of high‐mobility polymer semiconductors gained from experiments with high charge carrier concentration and better molecular‐scale understanding of the electronic structure at the semiconductor/dielectric interface.  相似文献   

2.
Recently there has been some major interest in the charge transport and light emission properties of organic field-effect transistors (OFETs). Different device structures have been proposed and they can be divided into two broad categories consisting of either a single layer or a bilayer. In the case of the single-layer OFETs, efficient light emission has not been observed while the performance of the bilayer OFETs appear to be more promising (for instance: recent work on a bilayer OFET has shown distinct ambipolar characteristics as well as limited light emission). In this work, we examined the electroluminescence intensities of bilayer OFETs reported in the open literature and attempted to identify the transport and recombination mechanisms. As observed, light emission in these devices appeared to be linked to a narrow region at the interface acting as a light-emitting source. To understand the recombination mechanisms, we computed the spatial charge distributions under various biasing conditions and correlated the results to the reported electroluminescence intensity data. Our overall results re-affirmed the significance of the light-emitting interface layer and the fact that device operation critically depended on the alignment of the energy levels at the respective interface.  相似文献   

3.
We propose an approach that allows us to take into account the location of atomic defects in the graphene structure and describe the effect of electron scattering on certain configurations of foreign atoms in a graphene matrix on density of electronic states (DOS) and the electron transport characteristics in 2D graphene. The local disorder is shown to play a decisive role in formation of the low-temperature behavior of the DOS and electron transport characteristics in the disordered 2D graphene.  相似文献   

4.
π-conjugated organic semiconductors have long been used as either holes or electrons transport materials. Recently, ambipolar charge carrier transport in these materials have been reported in many investigations. In this paper, we report on the basis of experimental results that the organic semiconductor (donor/acceptor) materials can be as good electrons transporters as these materials are holes transporters. In our study, the solution-processed unipolar diodes based on organic materials P3HT, VOPCPhO, and their blends with PCBM have been fabricated. The IV characteristics of these diodes have been analyzed in the space-charge-limited current regime. The values of the electron and hole mobilities for the materials were found in the range of 10?4–10?5?cm2/Vs.  相似文献   

5.
6.
7.
Functionalized carbon dots(CDs)obtained from citric acid derivative were selected as intercalatorto modify graphene and then dispersed into epoxy matrix to prepare CDs modified graphene/epoxy(CDs-G/EP)coatings.Meanwhile,their microstructure,self-healing and corro sion resistance behaviors were analyzed deeply.Structural characterizations indicated the formation of"π-π"interaction between functionalized carbon dots and graphene.By observation,the dispersion and interface compatibility of graphene were greatly enhanced by CDs.The change rules of electrochemistry results implied that the addition of 0.5 wt.%CDs-G in EP coating(CDs-G0.5%/EP)demonstrated a superior protective property on steel,which was attributed to the physical barrier of highly dispersed graphene and the self-healing ability of CDs.After 50 days immersion,the oxygen permeability coefficient and water absorption of CDs-G0.5%/EP coating were only 4.27×10-13cm3cm cm-2s-1Pa-1 and 4.4%,respectively.  相似文献   

8.
9.
10.
Doping improves performance. N- or B-doped carbon nanotubes (CNTs) uniformly dispersed in the active layer of P3HT/PCMB (poly (3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester) bulk-heterojunction solar cells selectively enhance electron or hole transport and eventually help carrier collection. Specifically, the incorporation of 1.0 wt% B-doped CNTs results in balanced electron and hole transport and accomplishes a power conversion efficiency improvement from 3.0% (without CNTs) to 4.1%.  相似文献   

11.
作为一种新型二维纳米材料,石墨烯因具有优异的电荷传输能力、大的比表面积、高可见光透过率、柔韧的结构以及化学稳定性等特点而被广泛关注。将石墨烯与半导体材料复合已成为新型光电催化电极材料的研究热点之一。综述了石墨烯基光电极的制备以及新型石墨烯基光电复合材料在有机污染物的降解、分解水制氢、还原CO2等领域的应用。最后,对石墨烯基半导体材料在光电催化领域存在的问题及其未来发展进行了展望。  相似文献   

12.
Conjugated polymers came to an unprecedented epoch that the charge transport is limited only by small disorder within aggregated domains. Accurate evaluation of transport performance is thus vital to optimizing further molecule design. Yet, the routine method by means of the conventional field‐effect transistors may not satisfy such a requirement. Here, it is shown that the extrinsic effects of Schottky barrier, access transport through semiconductor bulk, and concurrent ambipolar conduction seriously influence transport analysis. The planar transistors incorporating ohmic contacts free of access and ambipolar conduction afford an ideal access to charge transport. It is found, however, that only the planar transistors operating in low‐field regime are reliable to explore the inherent transport properties due to the energetic disorder lowering by the lateral field induced by high drain voltage. This work opens up a robust approach to comprehend the delicate charge transport in conjugated polymers so as to develop high‐performance semiconducting polymers for promising plastic electronics.  相似文献   

13.
回顾近年来CNTs-高分子混合膜的主要研究工作,概括碳纳米管(CNTs)在气体分离膜和液体分离膜的研究进展,并分析CNTs在聚合物膜中的定向排列.然而,目前尚无理论能完整地解释CNTs对分离膜性质的影响,而CNTs在膜中的良好分散和定向排列也不易实现.  相似文献   

14.
15.
Here, the ability of a novel near‐infrared dye to noncovalently self‐assemble onto the surface of single‐walled carbon nanotubes (SWCNTs) driven by charge‐transfer interactions is demonstrated. Steady‐state, Raman, and transient absorption spectroscopies corroborate the electron donating character of the near‐infrared dye when combined with SWCNTs, in the form of fluorescence quenching of the excited state of the dye, n‐doping of SWCNTs, and reversible charge transfer, respectively. Formation of the one‐electron oxidized dye as a result of interactions with SWCNTs is supported by spectroelectrochemical measurements. The ultrafast electronic process in the near‐infrared dye, once immobilized onto SWCNTs, starts with the formation of excited states, which decay to the ground state via the intermediate population of a fully charge‐separated state, with characteristic time constants for the charge separation of 1.5 ps and charge recombination of 25 ps, as derived from the multiwavelength global analysis. Of great relevance is the fact that charge‐transfer occurs from the hot excited state of the near‐infrared dye to SWCNTs.  相似文献   

16.
17.
利用第一性原理研究了两种具有边缘缺陷石墨烯纳米结的自旋输运,即边界氢原子饱和和未被饱和两种情况。结果表明:边缘缺陷改变了电子的输运行为。对于完整的石墨烯纳米带,两种自旋的电子在费米能级附近是完全简并的;对于含有边缘缺陷的石墨烯纳米结,两种自旋的电子在费米能级附近的很大能量范围内表现出自旋分离。电子局域态密度可进一步说明这种输运行为。这些纳米结可产生与自旋相关的极化电流。特别对于未饱和的缺陷结,在任何偏压下都有较高的自旋滤波效率。  相似文献   

18.
The performance of semiconducting polymers has been steadily increasing in the last 20 years. Improved control over the microstructure of these materials and a deeper understanding of how the microstructure affects charge transport are partially responsible for such trend. The development and widespread use of techniques that allow to characterize the microstructure of semiconducting polymers is therefore instrumental for the advance of these materials. This article is a review of the characterization techniques that provide information used to enhance the understanding of structure/property relationships in semiconducting polymers. In particular, the applications of optical and X‐ray spectroscopy, X‐ray diffraction, and scanning probe techniques in this context are described.  相似文献   

19.
20.
Graphene has attracted significant interest both for exploring fundamental science and for a wide range of technological applications. Chemical vapor deposition (CVD) is currently the only working approach to grow graphene at wafer scale, which is required for industrial applications. Unfortunately, CVD graphene is intrinsically polycrystalline, with pristine graphene grains stitched together by disordered grain boundaries, which can be either a blessing or a curse. On the one hand, grain boundaries are expected to degrade the electrical and mechanical properties of polycrystalline graphene, rendering the material undesirable for many applications. On the other hand, they exhibit an increased chemical reactivity, suggesting their potential application to sensing or as templates for synthesis of one‐dimensional materials. Therefore, it is important to gain a deeper understanding of the structure and properties of graphene grain boundaries. Here, we review experimental progress on identification and electrical and chemical characterization of graphene grain boundaries. We use numerical simulations and transport measurements to demonstrate that electrical properties and chemical modification of graphene grain boundaries are strongly correlated. This not only provides guidelines for the improvement of graphene devices, but also opens a new research area of engineering graphene grain boundaries for highly sensitive electro‐biochemical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号