首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
提出了一种新结构的低温多晶硅薄膜晶体管(poly-Si TFT).该poly-Si TFT由一超薄的沟道区和厚的源漏区组成.超薄沟道区可有效降低沟道内陷阱密度,而厚源漏区能保证良好的源漏接触和低的寄生电阻.沟道区和源漏区通过一低掺杂的交叠区相连接.该交叠区使得在较高偏置时,靠近漏端的沟道区电力线能充分发散,导致电场峰值显著降低.模拟结果显示该TFT漏电场峰值仅是常规TFT的一半.实验结果表明该TFT能获得好的电流饱和特性和高的击穿电压.而且,与常规器件相比,该TFT的通态电流增加了两倍,而最小关态电流减少了3.5倍  相似文献   

2.
A sub-micron poly-Si TFT device, operating at a drain bias of 1.5 V, has been studied with respect to channel layer thickness. A thinner channel layer may lead to better good gate control over the entire channel region, thus resulting in a lower threshold voltage. Similarly, under negative gate bias, a thinner channel layer would sustain larger vertical electric field. However, a thinned channel layer can reduce the source/drain bulk punch-through, thus causing a smaller channel region with relatively high electric field for carrier field emission. With using a low drain bias of 1.5 V, for the poly-Si TFT device with a thinner channel layer, the leakage current would be more effectively suppressed by the resultantly smaller channel region with relatively high electric field for carrier field emission. As a result, even for a gate length of 0.5 μm, the poly-Si TFT device with 20-nm channel layer can cause an off-state leakage of about 0.1 pA/μm at a drain bias of 1.5 V, and an on/off current ratio higher than 8 orders can be achieved.  相似文献   

3.
Studies the anomalous variations of the OFF-state leakage current (IOFF) in n-channel poly-Si thin-film transistors (TFTs) under static stress. The dominant mechanisms for the anomalous IOFF can be attributed to (1) IOFF increases due to channel hot electrons trapping at the gate oxide/channel interface and silicon grain boundaries and (2) IOFF decreases due to hot holes accumulated/trapped near the channel/bottom oxide interface near the source region. Under the stress of high drain bias, serious impact ionization effect will occur to generate hot electrons and hot holes near the drain region. Some of holes will be injected into the gate oxide due to the vertical field (~(V_Gstress V_Dstress)/T OX) near the drain and the others will be migrated from drain to source along the channel due to lateral electric field (~V_Dstress/LCH)  相似文献   

4.
This letter reports the study of the reliability behavior of poly-Si thin-film transistors (TFTs) with the pulsed gate voltage lower than the threshold voltage. First, the equivalent circuit model for poly-Si TFT is proposed. Considering the voltage drop for each element in the circuit model during the OFF-region gate dynamic stress, it is proposed that the main voltage drop occurs at the source and drain junctions, which could in turn degrade the device during stress. Based on this assumption, the gated p-i-n device fabricated on the same glass with the identical process conditions is stressed and analyzed. The similarity between the capacitance curves of the TFTs and gated p-i-n devices after stress proves that the main reason for degradation of poly-Si TFTs under gate OFF region ac stress is the large voltage drop across the source and drain junctions.   相似文献   

5.
The dynamic stress switching of p-channel polycrystalline-silicon (poly-Si) thin-film transistors from full depletion to accumulation bias creates the high electric field near source/drain (S/D) junctions due to the slow formation of the accumulated electrons at the $hbox{SiO}_{2}/hbox{poly}$ -Si interface. The high electric field causes impact ionization near the S/D, where the secondary electrons surmount the $hbox{SiO}_{2}$ barrier and are trapped near the interface. The channel region near the S/D is inverted to p-type by the trapped electrons, and the effective channel length is reduced. The drain current increases with the stress time, particularly for short-channel devices.   相似文献   

6.
Ultra-thin gate oxide reliability, in large area MOSFETs, can be monitored by measuring the gate current when the substrate is depleted. When the channel length is scaled down, the tunneling current associated with the source/drain extension region (SDE) to the gate–overlap regions can dominate the gate current. In N-MOSFETs, as a function of the negative gate voltage two components of the gate–drain leakage current should be considered, the first for VFB < VG < 0 V and the second for VG < VFB. These components are studied in this work before and after voltage stresses. The aim of this work is to see whether this gate–drain current can be used to monitor the oxide degradation above or near the source and/or drain extension region in N-MOSFETs. It is important because the most serious circuit-killing breakdown occurs above or near the drain (or source) extension region. Finally, we show that it is necessary, before explaining the gate LVSILC curves obtained after stresses on short-channel devices, to verify which is the dominate current at low voltage.  相似文献   

7.
Organic transistors with high on-state drain current at gate and drain voltages of −2 V fabricated on polyethylene naphthalate foils were investigated for sensor development. Two aspects were studied: (a) the ability of such transistors to raise the sensitivity of a temperature sensor and (b) the bias stress stability of the transistors subjected to square voltage pulses that turned them on and off repeatedly. To demonstrate the first aspect, the voltage-amplifying ability of the organic transistor was used to increase the response to the temperature, ordinarily achieved with a thermistor. To achieve voltage amplification, the transistor must have on-state drain current of at least 20 μA at gate and drain voltages of −2 V. Two transistors with on-state drain current of ~60 and ~120 μA were tested, leading to voltage gain of −2.8 and −4.9 V/V, respectively, thus increasing the sensitivity of the temperature sensor by a factor of up to 5. To study the second aspect, the same square voltage pulses were concurrently applied to the gate and drain electrodes, causing the transistor to turn on and off repeatedly. The turn-on and turn-off voltages were −2 and 0 V respectively and four different pulse periods were used: T of 5, 20, 40 and 60 s. For each T, 1000 pulses with turn-on time of 1 s and varying turn-off times were applied to the transistors, leading to the aggregate net stress time of 1000 s in all cases. The changes in the on-state drain current, threshold voltage, and field-effect mobility depended on T, in spite of the net stress time being the same. The reduction in the on-state drain current did not exceed 17%, stabilization was also observed after about 500 cycles in some cases, and the maximum drop occurred for medium T, thus making T = 60 s a favorable condition for sensor operation.  相似文献   

8.
A novel self-aligned polycrystalline silicon (poly-Si) thin-film transistor (TFT) was fabricated using the three layers of poly-Si, silicon-nitride, and thin amorphous silicon. Gate and source/drain silicide formation was carried out simultaneously following silicon nitride and amorphous silicon patterning, enabling the use of only two mask steps for the TFT. The fabricated poly-Si TFT using laser annealed poly-Si exhibited a field-effect mobility of 30.6 cm2/Vs, threshold voltage of 0.5 V, subthreshold slope of 1.9 V/dec., on/off current ratio of ~106, and off-state leakage current of 7.88×10-12 A/μm at the drain voltage of 5 V and gate voltage of -10 V  相似文献   

9.
A p-channel poly-Si/Si1-xGex/Si sandwiched conductivity modulated thin-film transistor (CMTFT) is proposed and demonstrated in this paper for the first time. This structure uses a poly-Si/Si1-xGex/Si sandwiched structure as the active layer to avoid the poor interface between the gate oxide and the poly-Si1-xGex material. Also an offset region placed between the channel and the drain is used to reduce the leakage current. Furthermore, the concept of conductivity modulation in the offset region is used to provide high on-state current. Results show that this structure provides high on-state current as well as low leakage current as compared to that of conventional offset drain TFTs. The on-state current of the structure is 1.3-3 orders of magnitude higher than that of a conventional offset drain TFT at a gate voltage of -24 V and drain voltage ranging from -15 to -5 V while maintaining comparable leakage current  相似文献   

10.
We propose a new poly-Si TFT structure employing air cavities at the edges of gate oxide in order to reduce the threshold voltage shift after electrical stress and to decrease the large leakage current. Due to the low dielectric constant of air, the air cavity behaves as a thick insulator reducing the vertical electric field near the drain, so that poly-Si region under air cavity acts as an offset. The new poly-Si TFT structure has been successfully fabricated by employing wet etching of the gate oxide followed by atmospheric pressure chemical vapor deposition (APCVD) oxide deposition. Our experimental results show that the leakage current is considerably reduced without decrease of the on-current and the device stability such as threshold voltage shift under high-gate bias is also improved  相似文献   

11.
A novel low temperature poly-Si (LTPS) TFT technology called the ultra-thin elevated channel TFT (UT-ECTFT) technology is proposed. The devices fabricated using this technology have an ultra-thin channel region (300 Å) and a thick drain/source region (3000 Å). The ultra-thin channel region is connected to the heavily doped thick drain/source region through a lightly doped overlapped region. The ultra-thin channel region is used to obtain a low grain-boundary trap density in the channel, and the overlapped lightly doped region provides an effective way for electric field spreading at the drain, thereby reducing the electric field there significantly. With the low grain-boundary trap density and low drain electric field, excellent current saturation characteristics and high drain breakdown voltage are obtained in the UT-ECTFT. Moreover, this technology provides complementary LTPS TFT's with more than two times increase in on-current and 3.5 times reduction in off-current compared to conventional thick channel LTPS TFT's  相似文献   

12.
We investigated the lifetimes for various poly-Si thin film transistor (TFT) structures. A gate-overlapped lightly doped drain (GOLDD) structure was self-aligned by the side etching of Al-Nd in an Al-Nd/Mo gate electrode. The dopant activation process in the LDD regions of GOLDD TFTs was performed by using a H2 ion-doping technique. We also observed the effect of lifetime on the source/drain activation process. The thermal annealing of the source/drain region was found to extend the lifetime. The predicted lifetime of our GOLDD poly-Si TFT is superior to those of non-lightly doped drain (non-LDD) and lightly-doped drain (LDD) poly-Si TFTs. The trapped-electron density at the drain junction after bias-stressing was also investigated using a two-dimensional (2-D) simulation  相似文献   

13.
Polysilicon thin-film transistors (poly-Si TFT's) with liquid phase deposition (LPD) silicon dioxide (SiO2) gate insulator were realized by low-temperature processes (<620°C). The physical, chemical, and electrical properties of the new dielectric layer were clarified. The low-temperature processed (LTP) poly-Si TFT's with W/L=200 μm/10 μm had an on-off current ratio of 4.95×10 6 at VD=5 V, a field effect mobility of 25.5 cm 2/V·s at VD=0.1 V, a threshold voltage of 6.9 V, and a subthreshold swing of 1.28 V/decade at VD=0.1 V. Effective passivation of defects by plasma hydrogenation can improve the characteristics of the devices. The off-state current (IL) mechanisms of the LTP poly-Si TFT's were systematically compared and clarified. The IL is divided into three regions; the IL is attributable to a resistive current in region I (low gate bias), to pure thermal generation current in region II (low drain bias), and to Frenkel-Poole emission current in region III (high gate bias and drain bias)  相似文献   

14.
A novel ultrathin elevated channel thin-film transistor (UT-ECTFT) made using low-temperature poly-Si is proposed. The structure has an ultrathin channel region (300 Å) and a thick drain/source region. The thin channel is connected to the heavily doped drain/source through a lightly doped overlapped region. The lightly doped overlapped region provides an effective way to spread out the electric field at the drain, thereby reducing significantly the lateral electric field there at high drain bias. Thus, the UT-ECTFT exhibits excellent current saturation characteristics even at high bias (Vds=30 V, Vgs=20 V). Moreover, the UT-ECTFT has more than two times increase in on-state current and 3.5 times reduction in off-state current compared to conventional thick channel TFT's  相似文献   

15.
High-mobility p-channel poly-Si TFTs were fabricated using a new low-temperature process (⩽500°C): self-aligned metal-induced lateral crystallization (MILC). With a one-step annealing at 500°C, activation of dopants in source/drain/gate a-Si films as well as the crystallization of channel a-Si films was achieved. The TFTs showed a threshold voltage of -1.7 V, and an on/off current ratio of ~107 without post-hydrogenation. The mobility was measured to be as high as 90 cm2/V·s, which is two to three times higher than that of the poly-Si TFTs fabricated by conventional solid-phase crystallization at around 600°C  相似文献   

16.
In this paper, a self-aligned double-gate (SADG) TFT technology is proposed and experimentally demonstrated for the first time. The self-alignment between the top-gate and bottom-gate is achieved by a noncritical chemical-mechanical polishing (CMP) step. A thin channel and a thick source/drain region self-aligned to the two gates are realized in the proposed process. Simulation results indicate that the self-aligned thick source/drain region leads to a significant reduction in the lateral electric field arisen from the applied drain voltage. N-channel poly-Si TFTs are fabricated with a maximum processing temperature of 600°C. Metal-induced unilateral crystallization (MIUC) is used to enhance the grain size of the poly-Si film. The fabricated SADG TFT exhibits symmetrical bi-directional transfer characteristics when the polarity of source/drain is reversed. The on-current under double-gate operation is more than two times the sum of that under individual top-gate and bottom-gate control. High immunity to short channel effects and kink-free current-voltage (I-V) characteristics are also observed in the SADG TFTs  相似文献   

17.
We have fabricated a high performance polycrystalline silicon (poly-Si) thin film transistor (TFT) with a silicon-nitride (SiNx ) gate insulator using three stacked layers: very thin laser of hydrogenated amorphous silicon (a-Si:H), SiNx and laser annealed poly-Si. After patterning thin a-Si:H/SiNx layers, gate, and source/drain regions were ion-doped and then Ni layer was deposited. This structure was annealed at 250°C to form a NiSi silicide phase. The low resistive Ni silicides were introduced as gate/source/drain electrodes in order to reduce the process steps. The poly-Si with a grain size of 250 nm and low resistance n+ poly-Si for ohmic contact were introduced to achieve a high performance TFT. The fabricated poly-Si TFT exhibited a field effect mobility of 262 cm2/Vs and a threshold voltage of 1 V  相似文献   

18.
A new poly-Si TFT employing a rather thick poly-Si (400 Å)/a-Si(4000 Å) double active layer is proposed and fabricated in order to improve the stability of poly-Si TFT without sacrificing the on/off current ratio. Due to the thick double layer the on-state drain current of the proposed TFT flows through a broad current path near the drain junction so that the current density in the drain depletion region where large electric field is applied is considerably reduced. Consequently, additional trap state generation attributed to large current flow and large electric field in poly-Si channel decreases and the electrical stability of the proposed device has been considerably improved  相似文献   

19.
The leakage current suppression mechanism in AlGaN/GaN High Electron Mobility Transistors (HEMTs) is investigated. It is known that leakage current can cause severe reliability problems for HEMT devices and conventional AlGaN/GaN HEMT devices suffer from detrimental off-state drain leakage current issues, especially under high off-state drain bias. Therefore, a leakage current suppression technique featuring hybrid-Schottky/ohmic-drain contact is discussed. Through the 2-zones leakage current suppression mechanism by the hybrid-Schottky/drain metal including the shielding effect of the rough ohmic-drain metal morphology and the drain side electric field modulation, AlGaN/GaN HEMT featuring this novel technique can significantly enhance the leakage current suppression capability and improve the breakdown voltage. An analytical method using loop-voltage-scanning is proposed to illustrate the optimization procedure of the hybrid-Schottky/ohmic drain metallization on leakage current suppression. Through the comparison of the loop leakage current hysteresis of conventional ohmic drain HEMT and hybrid-Schottky/ohmic drain, the leakage current suppression mechanism is verified through the leakage current considering surface acceptor-like trap charging/discharging model. Device featuring the hybrid-Schottky/ohmic drain technique shows an improvement in breakdown voltage from 450 V (with no Schottky drain metal) to 855 V with a total drift region length of 9 μm, indicating enhanced off-state reliability characteristics for the AlGaN/GaN HEMT devices.  相似文献   

20.
We have proposed and fabricated a self-aligned polysilicon thin-film transistor (poly-Si TFT) with a thick dielectric layer at the gate edges near the source and drain. A T-shaped polysilicon gate was successfully formed by the damascene process used in VLSI interconnection technology. During the on state, an inversion layer is induced by the subgate as a drain so that the on current is still high and the poly-Si region under the subgate behaves as an offset, reducing the off-state leakage current during the off-state. As the subgate dielectric becomes 3.5 times thicker than the main gate oxide, the minimum off-state leakage current of the new TFT is decreased from 1.4/spl times/10/sup -10/ to 1.3/spl times/10/sup -11/ without sacrifice of the on current. In addition, the on-off current ratio is significantly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号