首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study investigated the possible role of nitric oxide (NO) in the development of the withdrawal contractures of guinea pig isolated ileum after acute activation of mu- and kappa-opioid receptors. After a 4-min in vitro exposure to morphine (mu-opioid receptor preferring, but not selective, agonist), [D-Ala2-N-methyl-Phe4-Gly5-ol-]enkephalin (DAMGO; highly selective mu-opioid receptor agonist), or trans(+/-)-3,4-dichloro-N-methyl-N-2(1-pyrrolidynyl)cyclohexyl-ben zeneacetamide (U50-488H; highly selective kappa-opioid receptor agonist), the guinea-pig isolated ileum exhibited a strong contracture after the addition of naloxone. L-N(G)-nitro arginine methyl ester (3-300 microM) injected 10 min before the opioid receptor agonists was able dose dependently to reduce the naloxone-induced contraction after exposure to mu- and kappa-opioid receptor agonists whereas D-N(G)-nitro arginine methyl ester at the same concentrations did not affect it. The inhibitory effect of L-N(G)-nitro arginine methyl ester on morphine, DAMGO and U50-488H withdrawal was dose dependently reversed by L-arginine (3-300 microM) but not by D-arginine. Finally, glyceryl trinitrate on its own (3-300 microM) significantly increased the naloxone-induced contraction after exposure to mu- and kappa-opioid receptor agonist and it was also able to reverse the inhibition of opioid withdrawal caused by L-N(G)-nitro arginine methyl ester. These results provide evidence that NO has a role in the development of opioid withdrawal and that mu- or kappa-opioid receptors are involved.  相似文献   

2.
1. The effects of adenosine receptor agonists upon both electrically-evoked and phenylephrine-induced contractile responses were investigated in the bisected vas deferens and the cauda epididymis of the guinea-pig. Electrical field-stimulation (10 s trains of pulses at 9 Hz, 0.1 ms duration, supramaximal voltage) elicited biphasic and monophasic contractile responses from preparations of bisected vas deferens and cauda epididymis, respectively; these responses were abolished by tetrodotoxin (300 nM). 2. In the prostatic half of the vas deferens the A1 selective adenosine receptor agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) and the non-selective A1/A2 adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA) inhibited electrically-evoked contractions (pIC50+/-s.e.mean values 6.15+/-0.24, 5.99+/-0.26 and 5.51+/-0.24, respectively). The responses to CPA were blocked by the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine, DPCPX (100 nM). 3. In the epididymal half of the vas deferens NECA potentiated (at < or = 100 nM) and inhibited (at > or = 1 microM) electrically-evoked contractions. In the presence of the non-selective alpha-adrenoceptor antagonist phentolamine (3 microM), the alpha1-adrenoceptor antagonist, prazosin (100 nM), or at a reduced train length (3 s) NECA inhibited electrically-evoked contractions (pIC50 values 6.05+/-0.25, 5.97+/-0.29 and 5.71 +/-0.27, respectively). CPA (at 10 microM) also inhibited electrically-evoked contractions in this half of the vas deferens. In the presence of prazosin (100 nM), CPA also inhibited electrically-evoked contractions (pIC50 6.14+/-0.67); this effect was antagonized by DPCPX (30 nM, apparent pK(B) 8.26+/-0.88). In the presence of the P2 purinoceptor antagonist, suramin (300 microM), CPA (up to 1 microM) potentiated electrically-evoked contractions. 4. NECA, CPA and APNEA potentiated electrically-evoked contractions in preparations of cauda epididymis (pEC50 values 7.49+/-0.62, 7.65+/-0.74 and 5.84+/-0.86, respectively), the response to CPA was competitively antagonized by DPCPX (100 nM) with an apparent pK(B) value of 7.64+/-0.64. 5. The alpha1-adrenoceptor agonist phenylephrine elicited concentration-dependent contractile responses from preparations of bisected vas deferens and cauda epididymis. NECA (1 microM) potentiated responses to phenylephrine (< or = 1 microM) in the epididymal, but not in the prostatic half of the vas deferens. In preparations of epididymis NECA (1 microM) shifted phenylephrine concentration response curves to the left (4.6 fold). In the presence of a fixed concentration of phenylephrine (1 microM), NECA elicited concentration-dependent contractions of preparations of the epididymal half of the vas deferens and of the epididymis (pEC50 values 7.57+/-0.54 and 8.08+/-0.18, respectively). NECA did not potentiate responses to ATP in either the epididymal half of the vas deferens or the epididymis. 6. These studies are consistent with the action of stable adenosine analogues at prejunctional A1 and postjunctional A1-like adenosine receptors. The prejunctional A1 adenosine receptors only inhibit the electrically-evoked contractions of purinergic origin (an effect predominant in the prostatic half of the vas deferens). At the epididymis, where electrically-evoked contractions are entirely adrenergic, the predominant adenosine receptor agonist effect is a potentiation of alpha1-adrenoceptor-, but not of ATP-induced contractility.  相似文献   

3.
1. The effects exerted by D1 and D2 dopamine agonists and antagonists on the acute opiate withdrawal induced by mu- and kappa-receptor agonists were investigated in vitro. 2. Following a 4 min in vitro exposure to morphine (moderately selective mu-agonist), [D-Ala2, Me-Phe4, Gly-ol5]enkephalin (DAMGO, highly selective mu-agonist) or U-50488H (highly selective kappa-agonist) the guinea-pig isolated ileum exhibited a strong contracture after the addition of naloxone. 3. The non-selective dopamine receptor antagonist haloperidol when added before or after the opioid agonists, was able dose-dependently to prevent or to reverse the naloxone-induced contracture after exposure to mu- (morphine and DAMGO) and kappa- (U-50488H) opioid agonists. The non-selective dopamine receptor agonist, apomorphine, was able to exert the same effects only at the highest concentration used. 4. The selective D2 dopamine receptor antagonist, sulpiride, was also able to reduce dose-dependently both mu- and kappa-opioid withdrawal, whereas the D1-receptor selective antagonist SCH 23390 did not affect either mu- or kappa-opioid withdrawal. 5. Bromocriptine, a D2 selective dopamine receptor agonist was able to increase significantly, and in a concentration-dependent manner, the naloxone-induced contracture by mu- and kappa-opioid agonists, whereas SKF 38393, a D1 selective dopamine receptor agonist, increased only the withdrawal after morphine or U50-488H. 6. Our data indicate that both D1 and D2 dopamine agonists and antagonists are able to influence opiate withdrawal in vitro, suggesting an important functional interaction between the dopaminergic system and opioid withdrawal at both the mu- and kappa-receptor level. 7. Furthermore, the ability of sulpiride to block strongly opiate withdrawal when compared to SCH 23390, as well as the effect of bromocriptine to increase opiate withdrawal suggest that D2 dopamine receptors may be primarily involved in the control of opiate withdrawal.  相似文献   

4.
To assess the role of ORL1 (opioid receptor-like 1) receptor in the bowel movement, we investigated the effect of nociceptin on colonic contraction and transit in rats. Nociceptin (0.1-100 nM) concentration-dependently caused an immediate tonic contraction followed by rhythmic waves of contractions in the isolated colon. The response to nociceptin (10 nM) was not affected by the classical opioid receptor antagonists, naloxone, naltrindole and nor-binaltorphimine. Suppression of effect of inhibitory neurotransmitters using pituitary adenylate cyclase activating polypeptide(6-38) (PACAP-(6-38); 3 microM), vasoactive intestinal polypeptide(10-28) (VIP-(10-28); 3 microM) and N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM) did not influence the nociceptin-induced contractions. In anesthetized rats, intravenous administration of nociceptin (1 microg/kg) or morphine (1 mg/kg) caused phasic contractions in the proximal colon. Pretreatment with naloxone (300 microg/kg, i.v.) abolished the contractions induced by morphine, but not by nociceptin. The rate of large intestinal transit was dose-dependently accelerated by nociceptin (0.03-3 microg/kg, s.c.), but was retarded by morphine (1.7-5 mg/kg, s.c.). These results indicate that stimulation of ORL1 receptor accelerates the colonic contraction and transit independently from opioid receptors.  相似文献   

5.
The mechanism of potentiation of prostaglandin (PG) F2alpha-induced contraction of mouse mesenteric veins by (+/-)-[6-gingerol was investigated in vitro. (+/-)-[6]-Gingerol (0.3mM) potentiated the maximal contraction response elicited by PGF2alpha (0.28 mm) in the presence of intact vascular endothelium, but not in its absence (de-endothelialized preparations). The potentiating effect was completely inhibited by cyclooxygenase inhibitors (0.2 mm aspirin and 0.2 mm indomethacin) and partly by calcium antagonists (2 microM verapamil, 8 nM nitrendipine and 1 microM ryanodine), but not inhibited by nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor and ONO-3708, a thromboxane (TX) A2 antagonist. The potentiation by (+/-)-[6]-gingerol is also observed in mesenteric veins of streptozotocin-diabetic mice where the enhancement of PGF2alpha-induced contraction is caused mainly by activation of lipoxygenase. The potentiation of PGF2alpha-induced contraction by (+/-)-[6]-gingerol may be caused by a cyclooxygenase-dependent release of vasoconstrictors, other than PGF2alpha and TXA2, or by inhibiting vasorelaxants released from endothelial cells of mouse mesenteric veins.  相似文献   

6.
Papaverine (0.3-100 microM) more potently inhibited phenylephrine (1 microM)-induced contraction than 65 mM K+-induced contraction of the aorta, while it equally inhibited contractions induced by 65 mM K+ and carbachol (1 microM) in ileal smooth muscle. In phenylephrine-treated aorta, papaverine (1-10 microM) increased the cAMP and cGMP content. However, in carbachol-treated ileum, 30 microM papaverine partially increased the cAMP content while it maximally relaxed the preparation. In fura2-loaded aorta, papaverine (0.3-10 microM) inhibited both the contraction and the increase in intracellular Ca2+ level ([Ca2+]i) induced by phenylephrine in parallel. However, papaverine inhibited carbachol-induced contraction with only a small decrease in [Ca2+]i. Papaverine (1-30 microM) inhibited the carbachol-induced increase in oxidized flavoproteins, an indicator of increased mitochondrial oxidative phosphorylation, in ileal smooth muscle whereas it did not change the phenylephrine-induced increase in the aorta. These results suggest that papaverine inhibits smooth muscle contraction mainly by the accumulation of cAMP and/or cGMP due to the inhibition of phosphodiesterase in the aorta whereas, in ileal smooth muscle, papaverine inhibits smooth muscle contraction mainly by the inhibition of mitochondrial respiration.  相似文献   

7.
1. This study examined the effects of sodium rhein (0.03-30 microM) on the contractions of the isolated circular muscle of guinea-pig ileum induced by acetylcholine (100 nM), substance P (3 nM) and electrical stimulation (10 Hz for 0.3 s, 100 mA, 0.5 ms pulse duration). The effect of sodium rhein was also evaluated on the ascending excitatory reflex using a partitioned bath (oral and anal compartments). Ascending excitatory enteric nerve pathways were activated by electrical field stimulation (10 Hz for 2 s, 20 mA, 0.5 pulse duration) in the anal compartment and the resulting contraction of the guinea-pig intestinal circular muscle in the oral compartment was recorded. 2. Sodium rhein (0.3, 3 and 30 microM) significantly potentiated (52+/-11% at 30 microM) acetylcholine-induced contractions. In the presence of tetrodotoxin (0.6 microM) or omega-conotoxin GVIA (10 nM) sodium rhein (3 and 30 microM) did not enhance, but significantly reduced (49+/-10% and 44+/-8%, respectively, at 30 microM) acetylcholine-induced contractions. 3. Sodium rhein (0.3, 3 and 30 microM) significantly increased (65+/-11% at 30 microM) substance P-induced contractions. In the presence of tetrodotoxin (0.6 microM), omega-conotoxin GVIA (10 nM) or atropine (0.1 microM), sodium rhein (3 and 30 microM) significantly reduced (50+/-10%, 55+/-8% and 46+/-10%, respectively, at 30 microM) substance P-induced contractions. 4. NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) abolished the potentiating effect of sodium rhein on acetylcholine and substance P-induced contractions. At the highest concentration (30 microM), sodium rhein, in presence of L-NAME, reduced the acetylcholine (30+/-6%)- or substance P (36+/-6%)-induced contractions. 5. Sodium rhein (30 microM) significantly potentiated (29+/-9%) the electrically-evoked contractions. L-NAME (100 microM), but not phentolamine, enhanced the effect of sodium rhein. Sodium rhein (30 microM) significantly increased (32+/-9%) the ascending excitatory reflex when applied in the oral, but not in the anal compartment. 6. These results indicate that sodium rhein (i) activates excitatory cholinergic nerves on circular smooth muscle presumably through a facilitation of Ca2+ entry through the N-type Ca2+ channel, (ii) has a direct inhibitory effect on circular smooth muscle and (iii) does not affect enteric ascending neuroneural transmission. Nitric oxide could have a modulatory excitatory role on sodium rhein-induced changes of agonist-induced contractions and an inhibitory modulator role on sodium rhein-induced changes of electrically-induced contractions.  相似文献   

8.
1. The effect of oxytocin on endothelium-intact and endothelium-denuded segments of the human uterine artery rings was investigated. 2. In both types of preparation oxytocin induced contraction of human uterine artery with similar potency and efficacy (pEC50 values: 6.95 +/- 0.05 vs 7.06 +/- 0.01; maximal response values: 61 +/- 4.1% vs 63 +/- 5.1% for arteries with and without endothelium, respectively). 3. In contrast, human uterine arteries, both intact and denuded of endothelium, did not respond to the addition of the selective oxytocin receptor agonist, [Thr4, Gly7]oxytocin (10 nM(-1) microM). 4. The vasopressin receptor antagonists, [d(CH2)5Tyr(Me)]AVP (10-100nM) and [d(CH2)5,D-Ile2,Ile4]AVP (300 nM-3 microM) produced parallel rightward shifts of the curves for oxytocin. The Schild plots constrained to a slope of unity gave the following -log K(B) values: [d(CH2)5Tyr(Me)] AVP vs [d(CH2)5,D-Ile2,Ile4] AVP 9.24 vs 6.91 and 9.26 vs 6.84 for human uterine artery with intact and those denuded of endothelium, respectively. In contrast, in both types of preparations the oxytocin receptor antagonist, [d(CH2)5Tyr(OMe), 2Orn8]vasotocin (1 microM), did not significantly affect oxytocin-induced contractions. 5. The calculated pK(A) values for oxytocin itself also did not differ between preparations: 6.56 and 6.43 for human uterine artery with and without endothelium, respectively. In both types of preparations, the receptor reserve (K(A)/EC50) was close to unity (intact vs denuded: 3.9 vs 3.0). 6. It is concluded that, in human uterine artery, oxytocin induces contractions that are not modulated by the endothelium. It is likely that oxytocin acts as a partial agonist on human uterine artery, regardless of the endothelial condition. On the basis of differential antagonists affinity and affinity of oxytocin itself, it is probable that receptors involved in oxytocin-induced contraction in human uterine arteries belong to the V(1A) vasopressin receptors.  相似文献   

9.
1. The present experiments were undertaken in order to characterize further the apparently irreversible inhibition of the contraction of depolarized rat aorta caused by lacidipine, a 1,4-dihydropyridine calcium antagonist. 2. We studied the effect of lacidipine on contraction evoked by 100 mM KCl solution in rat aorta, treated by N omega-nitro-L-arginine (0.1 mM), an inhibitor of nitric oxide (NO) synthesis. We compared the effect of prolonged depolarization on lacidipine and (+)-isradipine inhibition and the reversal of this inhibition after washout in the absence of dihydropyridines. Assuming that the onset of lacidipine-evoked inhibition was a pseudo-first order association kinetics, we estimated the dissociation rate constant (k-1 = 0.031 min-1), the association rate constant (k1 = 2.70 x 10(8) M-1 min-1) and the dissociation constant (KD = k-1/k1 = 115 pM) which was close to the IC50 value in steady-state conditions (160 pM). 3. The inhibitory effects of lacidipine and (+)-isradipine on rat aorta contraction were reversibly enhanced after preincubation with the drug in a 40 mM KCl-solution. Washout with drug-free 40 mM K(+)-depolarizing solution reversed inhibition in the (+)-isradipine-treated preparations, but not in the lacidipine-treated ones. 4. Radioligand binding studies were performed with [3H]-lacidipine and [3H]-isradipine in microsomes from rat aorta and rat ileum. Both ligands bound to a homogeneous population of binding sites (for[3H]-lacidipine: KD = 23 +/- 2.6 pM, Bmax = 380 +/- 21 fmol mg-1 protein in membranes from aorta; KD =23 +/- 3.1 pM, Bmax = 790 +/- 60 fmol mg-1 protein in membranes from ileum; for [3H]-isradipine:KD = 140 +/- 46 pM, Bmax = 350 +/- 64 fmol mg-1 protein in membrane from aorta; KD = 68 +/- 14 pM,Bmax = 760 +/- 75 fmol mg-1 protein in membranes from ileum). After isotopic dilution, [3H]-lacidipine and [3H]-isradipine dissociated according to a monoexponential kinetics. In membranes from ileum, the calculated dissociation rate constants (kappa_ 1) were 0.0257 min-1 and 0.0595 min-1, for [3H]-lacidipine and[3H]-isradipine, respectively.5. The non specific binding of [3H]-lacidipine and [3H]-isradipine, was measured in intact rat aorta preparations incubated under the conditions of the functional experiments, in the presence of nifedipine(1 microM). After incubation with [3H]-lacidipine 77.6 +/- 1.9 pM for 2 h the concentration of drug in the tissue was 15.15 +/- 1.18 fmol mg-1 w.wt. and still amounted to 7.24 +/- 0.61 fmol mg-1 w.wt. after 3.5 h washout in drug-free solution. After incubation with [3H]-isradipine 47.2 +/- 0.4 pM for 2 h it was 2.26 +/-0.07 fmol mg-1 w.wt. and was undetectable after 3.5 h washout in a drug-free solution.6. It is concluded that lacidipine interacts reversibly with dihydropyridine binding sites and that the apparent irreversible inhibition of contraction in depolarized preparations could be related to a nonspecific binding in a tissue compartment different from the plasma membrane.  相似文献   

10.
1. The aim of this study was to determine the conditions under which the alpha2-adrenoceptor agonist UK14304 produces vasoconstriction in the porcine isolated ear artery. 2. UK14304 (0.3 microM) produced a small contraction of porcine isolated ear arteries which was 7.8+/-3.3% of the response to 60 mM KCl. Similar sized contractions were obtained after precontraction with either 30 nM angiotensin II, or 0.1 microM U46619 (8.2+/-1.8% and 10.2+/-2.6% of 60 mM KCl response, respectively). However, an enhanced alpha2-adrenoceptor response was uncovered if the tissue was precontracted with U46619, and relaxed back to baseline with 1-2 microM forskolin before the addition of UK14304 (46.9+/-9.6% of 60 mM KCl response). 3. The enhanced responses to UK14304 in the presence of U46619 and forskolin were not inhibited by the alpha1-adrenoceptor antagonist prazosin (0.1 microM), but were inhibited by the alpha2-adrenoceptor antagonist rauwolscine (1 microM), indicating that the enhanced responses were mediated via postjunctional alpha2-adrenoceptors. 4. In the presence of 0.1 microM U46619 and 1 mM isobutylmethylxanthine (IBMX), 1 microM forskolin produced an increase in [3H]-cyclic AMP levels in porcine isolated ear arteries. Addition of 0.3 microM UK14304 prevented this increase. 5. The enhanced UK14304 response was dependent upon the agent used to relax the tissue. After relaxation of ear arteries precontracted with 10 nM U46619 and relaxed with forskolin the UK14304 response was 46.9+/-9.6% of the 60 mM KCl response, and after relaxation with sodium nitroprusside (SNP) the response was 24.8+3.3%. However, after relaxation of the tissue with levcromakalim the UK14304 response was only 8.2+/-1.7%, which was not different from the control response in the same tissues (12.2+/-5.6%). An enhanced contraction was also obtained after relaxation of the tissue with the cyclic AMP analogue dibutyryl cyclic AMP (23.2+/-1.3%) indicating that at least part of the enhanced response to UK14304 is independent of the ability of the agonist to inhibit cyclic AMP production. 6. Relaxation of U46619 contracted ear arteries with SNP could be inhibited by the NO-sensitive guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) indicating that production of cyclic GMP is necessary for the relaxant effect of SNP. However, ODQ had no effect on the relaxation of tissue by forskolin, suggesting that this compound does not act via production of cyclic GMP. Biochemical studies showed that while forskolin increases the levels of cyclic AMP in the tissues, SNP had no effect on the levels of this cyclic nucleotide. 7. In conclusion, enhanced contractions to the alpha2-adrenoceptor agonist UK14304 can be uncovered in porcine isolated ear arteries by precontracting the tissue with U46619, followed by relaxation back to baseline with forskolin, SNP or dibutyryl cyclic AMP before addition of UK14304. There was a greater contractile response to UK14304 after relaxation with forskolin than with SNP or dibutyryl cyclic AMP, suggesting that cyclic AMP-dependent and- independent mechanisms are involved in the enhancement of the UK14304 response.  相似文献   

11.
The effects of mercuric chloride (HgCl2) and methyl mercury (MeHg) were examined on basal mechanical activity and electrically-induced neurogenic cholinergic contractions (twitch contractions) in longitudinal muscle-myenteric plexus strips from guinea-pig distal ileum. Both compounds at 0.33 microM slightly enhanced the amplitude of twitch contractions in approximately 50% preparations. This effect was probably due to facilitation of acetylcholine (ACh) release since 0.1 and 1 microM mercurials increased electrically-evoked tritium outflow from [3H]choline preloaded muscle layer with attached myenteric plexus. Conversely, higher mercury concentrations inhibited twitch contractions (HgCl2 IC50 = 21.3 +/- 6.4 microM; MeHg IC50 = 45.1 +/- 5.5 microM), as well as contractions to exogenous ACh (0.1 microM) in resting preparations, and concomitantly increased the basal tone. The former effects possibly reflected an antimuscarinic activity of mercury, while the latter was related to alterations of calcium homeostasis in the effector cells. Indeed, the effect of HgCl2 on basal tone was antagonized by the Ca2+ entry blocker nifedipine (3, 10, 30 nM), indicating Hg-induced facilitation of Ca2+ influx through voltage-dependent channels. On the whole, our results suggest that cholinergic neuromuscular transmission and Ca(2+)-dependent mechanisms underlying smooth muscle contractility are targets for mercury toxicity in the intestine.  相似文献   

12.
In the present study the effect of the opioid heptadecapeptide nociceptin, also termed orphanin FQ, an endogenous ligand for the orphan receptor named ORL1 (opioid receptor-like 1) receptor, was investigated on [3H]noradrenaline release induced by electrical field stimulation (24 pulses at 0.4 Hz, 200 mA, 0.3 ms duration) in the rat tail artery in the absence and presence of an alpha2-adrenoceptor antagonist, rauwolscine 3 microM. Nociceptin inhibited the electrically-evoked tritiated noradrenaline release in a concentration-dependent manner from rat tail arteries. This inhibitory effect of nociceptin was enhanced in the presence of the alpha2-adrenoceptor antagonist rauwolscine (maximum inhibition by 25% and 50% in the absence and presence of rauwolscine, respectively). At a supramaximal concentration (10 microM), the inhibitory action of DAGO, a selective micro-opioid receptor agonist, was less pronounced than that of nociceptin. The inhibitory effect of nociceptin was counteracted by naloxone benzoylhydrazone (3 microM) which by itself did not change the stimulation-evoked noradrenaline overflow. Naloxone (10 microM), a non-selective opioid receptor antagonist, did not affect the inhibitory effect of nociceptin whereas it abolished that of DAGO. In conclusion, these results suggest that nociceptin modulates noradrenergic neurotransmission by acting on prejunctional ORL1 receptors located on nerve terminals innervating the rat tail artery. They also demonstrate that prejunctional ORL1 receptors interact with prejunctional alpha2-adrenoceptors. The physiological significance of this phenomenon remains to be determined.  相似文献   

13.
1. The modulatory effects of L-glutamate and its structural analogues, and of gamma-aminobutyric acid (GABA), on sympathetic co-transmission were studied in the rat isolated vas deferens exposed to electrical field stimulation (EFS). 2. Application of exogenous L-glutamate caused a concentration-dependent (1 microM-3 mM) inhibition of the rapid twitch component of the biphasic EFS contraction. However, L-glutamate (1 microM-3 mM) had a minimal effect on the phasic contraction induced by exogenous adenosine 5'-triphosphate (ATP, 150 microM) and noradrenaline (50 microM). Unlike L-glutamate, D-glutamate had no effect on the EFS contraction. 3. The L-glutamate-induced inhibition of the EFS contractions was significantly attenuated by the glutamate decarboxylase (GAD) inhibitor 3-mercapto-propionic acid (150 microM) and was abolished in the presence of the GABA transaminase (GABA-T) inhibitor, 2-aminoethyl hydrogen sulphate (500 microM). 4. The L-glutamate-induced inhibition of the electrically evoked contraction was not affected by the adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)(30 nM), reactive blue 2 (30 microM) or the GABAA receptor antagonist bicuculline (50 microM). However, the GABAB receptor antagonist 2-hydroxysaclofen (50 microM) significantly inhibited the L-glutamate effect. 5. Similar to L-glutamate, GABA also caused a concentration-dependent (0.1-100 microM) inhibition of the EFS contractions. This GABA-induced inhibition was not affected by either the GABAA receptor antagonist bicuculline (50 microM) or reactive blue 2 (30 microM). However, a significant attenuation of the GABA-mediated effect was recorded with the GABAB receptor antagonist 2-hydroxysaclofen (50 microM). Contractions of the vas deferens induced by exogenous ATP and noradrenaline were not affected by GABA (0.1-100 microM). 6. The L-glutamate analogues, N-methyl-D-aspartate (NMDA) (1 microM-1 mM) and quisqualate (Quis 0.1 microM-0.3 mM) had no effect, whilst kainate (Kain, 1 microM-1 mM) caused an inhibition of the EFS-induced contractions. Effects of Kain could be abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dioxine (CNQX, 10 microM). NMDA, Quis and Kain had no effect on the exogenous ATP- or noradrenaline-induced contractions. 7. It is concluded that the excitatory amino acid L-glutamate modulates the electrically evoked vas deferens contraction through conversion to the inhibitory amino acid GABA by a specific GABA transaminase. The GABA formed may then act on GABAB receptors and cause inhibition of the contraction through a presynaptic mechanism.  相似文献   

14.
Semotiadil fumarate (SD-3211), a Ca2+ channel blocker of benzothiazine derivative and its (S)-(-)-enantiomer (SD-3212), inhibited K(+)- and norepinephrine (NE)-induced contractions in isolated rat aortas. Inhibition of NE contraction induced by both drugs was greater than that induced by diltiazem or bepridil, whereas inhibition of K(+)-contraction was similar to that induced by diltiazem or bepridil. Semotiadil and SD-3212 (10 microM) inhibited the increase in cytosolic Ca2+ ([Ca2+]i) induced by 65.4 mM K+ in fura-2-loaded preparations as well as diltiazem and bepridil (10 microM). On the other hand, semotiadil and SD-3212 (10 microM) inhibited only the early phase of increase in [Ca2+]i induced by 1 microM NE. After 5 min, no significant effect on [Ca2+]i was observed with these compounds despite the significant decrease in the contraction. In contrast to these compounds, diltiazem and bepridil 10 microM affected neither the increase in [Ca2+]i nor the contraction induced by NE. Semotiadil and SD-3212 inhibited the transient contraction induced by 1 microM NE in the absence of external Ca2+. Both compounds partially but significantly inhibited the NE-induced contraction in nifedipine-treated muscles. These results suggest that semotiadil and SD-3212 inhibit contractions of vascular smooth muscle (VSM) not only through blockade of voltage-dependent Ca2+ channels but also through other mechanisms, such as inhibition of Ca2+ release from Ca2+ stores or decrease in sensitivity of the contractile elements to Ca2+.  相似文献   

15.
1. In isolated tissue experiments, neurokinin A (NKA) produced concentration-dependent contraction of human and guinea-pig ureter (pD2 = 6.7 and 7.2, respectively); an effect greatly reduced (>80% inhibition) by the tachykinin NK2 receptor-selective antagonist MEN 11420 (0.1 microM). The tachykinin NK1 and NK3 receptor agonists septide and senktide, respectively, were ineffective. 2. Electrical field stimulation (EFS) of the guinea-pig isolated renal pelvis produced an inotropic response blocked by MEN 11420 (0.01-1 microM). In the same preparation MEN 11420 (0.1 microM) blocked (apparent pK(B) = 8.2) the potentiation of spontaneous motor activity produced by the NK2 receptor-selective agonist [betaAla8]NKA(4-10). 3. In sucrose-gap experiments, EFS evoked action potentials (APs) accompanied by phasic contractions of human and guinea-pig ureter, which were unaffected by tetrodotoxin or MEN 11420 (3 microM), but were blocked by nifedipine (1-10 microM). NKA (1-3 microM) produced a slow membrane depolarization with superimposed APs and a tonic contraction with superimposed phasic contractions. NKA prolonged the duration of EFS-evoked APs and potentiated the accompanying contractions. MEN 11420 completely prevented the responses to NKA in both the human and guinea-pig ureter. 4. Nifedipine (1-10 microM) suppressed the NKA-evoked APs and phasic contractions in both human and guinea-pig ureter, and slightly reduced the membrane depolarization induced by NKA. A tonic-type contraction of the human ureter in response to NKA persisted in the presence of nifedipine. 5. In conclusion, tachykinins produce smooth muscle excitation in both human and guinea-pig ureter by stimulating receptors of the NK2 type only. NK2 receptor activation depolarizes the membrane to trigger the firing of APs from latent pacemakers.  相似文献   

16.
The role of histamine H1-, H2- and H3-receptors was studied on neural transmission in ascending excitatory pathways of the guinea pig ileum. A two-compartment (oral and anal compartments) bath was used: ascending neural pathways were activated by electrical stimulation in the anal compartment and the resulting contraction of the circular muscle in the oral compartment was recorded. Drugs were applied in the anal compartment and each agonist was evaluated in the presence of the antagonists of the other two receptors. In the presence of cimetidine (10 microM) and thioperamide (1 microM), histamine (0.03-3 microM) depressed the nerve-mediated contractions (5-70% inhibition, P <.05-.01). The inhibitory effect of histamine was antagonized by mepyramine. At the higher concentrations (10 and 30 microM), histamine elicited contractions of the circular muscle in the oral compartment, and these were abolished by mepyramine (1 microM) and tetrodotoxin (0.6 microM). The H2 agonists dimaprit (30 and 100 microM) and amphamine (0.1-300 microM) produced small contractions of the circular muscle in the oral compartment. These contractile responses were abolished by tetrodotoxin (0.6 microM) and cimetidine (10 microM). The H3 agonist R-alpha-methylhistamine (0.001-1 microM) inhibited (2-58%, P <.05) the nerve-mediated contractions. This inhibitory effect was antagonized by the H3 antagonist thioperamide. These results indicate that 1) histamine, acting at H1 receptors, at lower concentrations depresses synaptic transmission, although at higher concentrations activates the enteric excitatory ascending pathway; 2) activation of H2 receptors by H2 agonists stimulates the enteric excitatory ascending pathways and 3) activation of H3 receptors inhibits synaptic transmission.  相似文献   

17.
Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a widely used tool for the depletion of neuropeptides from sensory C-fibres. Upon capsaicin treatment tachykinins are released, resulting in a variety of responses in the airways. We showed that after capsaicin (0.3 microM; 30 min) treatment of guinea pig tracheal smooth muscle preparations, the maximal contraction of the trachea after methacholine stimulation was strongly increased (capsaicin: 1.147 +/- 0.050 g vs. control: 0.717 +/- 0.047 g). This effect was completely nullified after pretreatment with capsazepine (2-[2-(4-chlorophenyl)ethyl-amino-thiocarbonyl]-7,8-dihydroxy-2,3, 4,5-tetrahydro-1H-2benzazepine; a vanilloid receptor antagonist) and YM38336 (a dual tachykinin NK1 and tachykinin NK2 receptor antagonist). Our results serve as a warning against using capsaicin as a putatively clean pharmacological tool to deplete the neuropeptides from pools on the C-fibres because we showed that capsaicin also strongly influences basal mechanisms in tracheal smooth muscle control.  相似文献   

18.
We extended observations on cocaine-induced turning and its interactions with mu-opioid receptor agonists in nigrally-lesioned rats to GBR12909 (1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-[3-phenyl-propyl]-piperazine) , a selective dopamine reuptake inhibitor. GBR12909 produced turning that was potentiated by the mu-opioid receptor agonists morphine and methadone. The effects of these opioids were blocked by the general opioid receptor antagonist naloxone, which did not affect the action of GBR12909. The reuptake inhibitors nisoxetine (norepinephrine) and fluoxetine (serotonin) did not produce turning alone or in combination with morphine. Antagonists selective for each opioid receptor subtype did not alter GBR12909-induced turning. However, naltrexone, another general opioid receptor antagonist, potentiated turning induced by GBR12909. This was blocked by naloxone, suggesting that naltrexone has opioid receptor agonist actions, in contrast to naloxone. These results indicate that cocaine-induced turning and its potentiation by mu-opioid receptor agonists are dependent upon the inhibition of dopamine reuptake.  相似文献   

19.
1. The effects of ryanodine, procaine, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) on noradrenaline (NA)- and caffeine-induced contractions of human vas deferens were investigated. 2. In the presence of nifedipine (1 microM), NA ( 100 microM) evoked biphasic contractions. Caffeine (20 mM) evoked repeatable tonic contractions. 3. Ryanodine (30 microM) inhibited the initial but not the secondary component of NA contractions. Procaine (1 and 10 mM) inhibited both components. Contractions induced by caffeine were unaffected by ryanodine or procaine. 4. The calmodulin antagonist W-7 (100 microM) reduced, in a reversible manner, both components of NA-induced response. Caffeine-induced contractions were also reduced in most preparations (8 of 11). In all preparations, contractions induced by caffeine were markedly inhibited after the washout of W-7. Higher doses of W-7 (300 microM) induced an increase in basal tension. 5. These results indicate that NA contracts the longitudinal muscle of human vas deferens by a ryanodine-sensitive calcium-induced calcium release (CICR) mechanism and, in addition, a ryanodine-insensitive pathway: both are sensitive to procaine. In contrast, contraction induced by caffeine is mediated by a pathway that is atypically insensitive to either ryanodine or procaine. The sensitivity of NA- and caffeine-induced contraction to W-7 suggests a role for calcium and its interaction with calmodulin in the response to both agents. The paradoxical action of W-7 is discussed.  相似文献   

20.
N-methyl-D-aspartate (NMDA) antagonists, such as MK801, delay the development of morphine tolerance. Magnesium, a noncompetitive NMDA antagonist, reduces postoperative morphine requirements. The present study was designed to evaluate the effects of intrathecal co-administration of magnesium sulfate with morphine on antinociceptive potentiation, tolerance, and naloxone-induced withdrawal signs. Magnesium sulfate (40-60 microg/h) co-administration for 7 days, similar to MK801 (10 nmol/h), prevented the decline in antinociceptive response compared with morphine (20 nmol/h). Magnesium sulfate (60 microg/h) produced no antinociception, but co-infused with morphine (1 nmol/h), it resulted in potentiated antinociception compared with morphine throughout the 7-day period. Probe morphine doses after 7-day infusions demonstrated a significantly greater 50% effective dose value for morphine 1 nmol/h (109.7 nmol) compared with saline (10.9 nmol), magnesium sulfate 60 microg/h (10.9 nmol), and magnesium sulfate 60 microg/h plus morphine 1 nmol/h (11.2 nmol), which indicates that magnesium had delayed morphine tolerance. Morphine withdrawal signs after naloxone administration were not altered by the co-infusion of magnesium sulfate. Cerebrospinal fluid magnesium levels after intrathecal magnesium sulfate (60 microg/h) for 2 days increased from 17.0 +/- 1.0 microg/mL to 41.4 +/- 23.6 microg/mL, although serum levels were unchanged. This study demonstrates antinociceptive potentiation and delay in the development of morphine tolerance by the intrathecal coinfusion of magnesium sulfate and morphine in the rat. Implications: The addition of magnesium sulfate, an N-methyl-D-aspartate antagonist, to morphine in an intrathecal infusion provided better analgesia than morphine alone in normal rats. These results suggest that intrathecal administration of magnesium sulfate may be a useful adjunct to spinal morphine analgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号