首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为研究强冲击倾向性煤在多级循环加载条件下的能量耗散特征及损伤演化过程,在实验室开展了陕西某矿煤样的多级循环加载试验,试验研究结果表明:在多级应力循环下煤样的耗散能先迅速降低,后缓慢增加,当循环上限应力达到63%破坏载荷时,耗散能开始急剧增加;而能量耗散率先迅速降低,后逐渐稳定;煤样加卸载阶段弹性模量均有增大趋势,加载阶段弹性模量先迅速增大,后缓慢增加,而卸载阶段弹性模量变化较为平稳。采用累积耗散能定义循环加载中试件的损伤变量,并建立煤样损伤演化方程,通过试验和数值计算测定各个参数。理论和试验研究表明,基于能量耗散分析建立的冲击倾向性煤损伤演化方程能够较好反映煤样的损伤演化过程。  相似文献   

2.
岩石变形特征与所受的应力状态以及加载历史密切相关。不同围压下控制轴向应变和控制环向应变的煤岩循环加卸载压缩试验表明:煤岩在循环加卸载过程中应力与应变不再是一一对应的关系,加载曲线与卸载曲线形成封闭的塑性滞回环;在变围压加卸载循环过程中,随着围压的增大,煤岩逐渐表现为线弹性性质;煤岩在反复加卸载过程中,其弹性模量几乎保持不变,而塑性应变却发生较大的变化;且随着循环次数增加,残余变形逐渐变小,泊松比逐渐变大。  相似文献   

3.
为了研究循环荷载作用下饱水岩石的能量演化和损伤特性,利用水泥砂浆材料开展分等级循环加卸载试验和等荷载幅值循环加卸载试验,对比分析饱和类岩石材料在不同循环加卸载方式下的弹塑性应变、弹性模量、能量密度、损伤变量随循环次数的变化规律。结果表明:两种循环加卸载作用下,饱和类岩石材料的初始循环残余塑性应变均较大,分别占总残余塑性应变的61%和76%;分等级循环加卸载作用下,弹性模量随循环等级的升高先增大后逐渐减小,输入能密度和弹性能密度随循环等级的增加不断增大,耗散能密度先减小后逐渐增大,耗能比曲线呈现出"勺"形演化特征;等荷载幅值循环荷载作用下,弹性模量随循环次数先增大后缓慢降低,3种能量密度在损伤稳定发展阶段基本保持定值,材料破坏阶段耗能比迅速增大;基于耗散能定义的损伤变量,分等级循环荷载作用下,随循环等级的增加损伤变量变化曲线呈"上凹"形上升;等荷载幅值循环荷载作用下,损伤变量随循环次数的增加呈线性增长,且累积总应变能是分等级循环加卸载的34.5倍,损伤破坏程度更大。  相似文献   

4.
为了研究岩石在循环加卸载下的力学特性及能量损伤演化规律,设计了5种花岗岩三轴循环加卸载试验。基于试验结果,详细分析了不同围压的循环加卸载模式下的总能量、弹性应变能和耗散能的演化特征及相互关系,建立了岩石损伤耗散能与循环加载次数及围压的耦合演化方程。结果表明:(1)当载荷小于峰值应力时,加载阶段的弹性模量小于卸载阶段的弹性模量;(2)峰值应力前,载荷所产生的能量主要表现为弹性应变能,而峰值应力后,载荷所产生的能量主要表现为耗散能;(3)随着围压的增加,岩石弹性应变能及耗散能增加;(4)循环加卸载作用下,岩石的耗散能与围压及加卸载循环次数有明显相关性,可以用非线性曲面进行拟合,可为定量分析循环加卸载过程中岩石损伤提供参考。  相似文献   

5.
为了获得砂岩循环加卸载路径下损伤特性和声发射Kaiser效应特征,开展了不同围压下砂岩循环加卸载声发射试验;从轴向应力、加载应力水平、能量耗散损伤角度,研究了三轴循环加卸载下声发射的不可逆比变化规律;评价了三轴循环加卸载下岩石Kaiser效应判断方法。结果表明:循环加卸载下耗散能损伤参数能较好地反映岩石的渐进损伤破坏,基于耗散能损伤参数的计算,能较好地反映岩石不同阶段的损伤特性,避免了应变参数计算损伤时压密阶段损伤值异常增大的现象。从应力水平、能量损伤角度分析声发射FR,更真实地反映岩石声发射Kaiser效应,随着围压增大Kaiser效应失效的应力提前,同一应力水平、相同能量损伤下,围压越大FR越小,声发射不可逆性随围压增大逐渐变得模糊。  相似文献   

6.
岩石材料损伤演化状态所对应的特征参数,对岩土工程的稳定性设计、预测及监测等至 关重要。 本文开展不同围压下砂岩分级循环加卸载试验,利用横向应变法和体积应变法确定受 载岩样损伤演化状态,基于损伤演化状态分析各阶段、各损伤演化特征点处能量参数演化特征及 与围压的关系。 结果表明:不同围压下,峰前各阶段能量参数随应变增大而增大;随着围压的增 大,峰值应力处的弹性应变能、耗散能突变向峰后转移;峰后残余应力阶段各能量参数降低并趋 于平缓。 σcc 处能量参数与围压成幂函数下降关系,且耗散能随围压增大趋于稳定;σci、σcd 及 σp 处能量参数随围压呈线性增加,各特征点处输入能量与弹性应变能差值随围压的变化趋势较小, 且在 σcd 处两者相对差值最小,输入能量转化为弹性应变能最多。  相似文献   

7.
李涛  马永君  刘波  盛海龙  贺鹏 《煤炭学报》2018,43(9):2438-2443
针对典型中生代富水弱胶结地层中的灰砂岩,利用TDW-200冻土三轴试验机对冻结饱水灰砂岩进行常规三轴压缩试验和循环加卸载试验,分析不同围压条件下的强度特征,重点研究了循环加卸载作用下冻结灰砂岩弹性模量的演化规律。试验结果表明:循环加卸载时,在低围压下峰值强度有所增加,而在高围压下峰值强度有"弱化"的现象;冻结灰砂岩试样加卸载全过程中弹性模量的变化规律与加卸载路径变化趋势具有一致性;单个滞回环内,切线弹性模量随着偏应力水平的增加呈现出先增加后减小的趋势,同一偏应力水平下,切线模量随循环次数的增加也表现为先增加后减小趋势。  相似文献   

8.
以马兰矿8#煤层煤样为研究对象,进行不同围压下的采动轴向循环加卸载实验,研究煤体渗流特性及能耗损伤特征。结果表明:随着轴向应力的循环加卸载,σ1-ε1曲线呈现螺旋式上升,卸载曲线与下一次的加载曲线之间形成明显的滞回环,加卸载渗透率-应变曲线逐渐变为细长的"条带状"曲线,并在较低围压下出现交叉;随着加卸载次数的增加,渗透率绝对恢复率减小,最大降低率达20%左右,围压越大渗透率恢复越困难。随着加卸载上限应力的增大,煤体在加卸载过程中吸收的总能量、弹性能和耗散能均随着循环次数的增加而增加,煤体的损伤变量也在增大,但增加速率较缓;在循环加卸载结束至煤体屈服点阶段,渗透率随损伤增加呈对数函数减小,直至达到渗透率最低点;在屈服点至煤体破坏阶段,煤体损伤变量增加速率变快,渗透率随损伤的增加呈指数函数增大,煤体开始加速破坏。  相似文献   

9.
为探究岩石损伤破坏过程中的能量演化及分配规律,以焦家矿区花岗岩为研究对象,利用ZTR-276三轴应力试验系统进行三轴循环加卸载试验,。研究结果表明:循环加卸载试验过程中,花岗岩的应力峰值和轴向应变量随着围压增加逐渐增大,表现出明显的围压效应;循环加卸载试验下,总能量密度,弹性能密度和耗散能密度在峰前阶段均与轴向应变呈正相关关系;随着围压增大,岩石储能效率增加,最大弹性能占比增大,最大耗散能占比却随着围压的增大而降低。研究结果可为循环扰动条件下深部巷道围岩损伤破坏失稳提供理论指导意义。  相似文献   

10.
李清淼  梁运培  邹全乐 《煤炭学报》2019,44(9):2803-2815
循环载荷广泛存在于采矿活动中并对煤岩的强度、损伤及渗透性质产生较大影响,例如煤层群开采多重保护工程中,被保护层煤岩就受到循环加卸载作用,并显著改变了煤岩的力学及渗流特性;瓦斯对煤的力学性质及能量耗散特征也具有显著的影响,不同加卸载路径下煤岩力学及渗流特性与常规加载下的性质存在显著差异,因而有必要研究循环加卸载条件下不同含瓦斯煤的渗流及损伤演化特征。根据煤层群开采条件下被保护层应力状态实时监测的相似模拟实验结果,设计了3种简化的循环加卸载应力路径,即阶梯循环加卸载、逐级增大循环加卸载和交叉循环加卸载,采用重庆大学自主研发的含瓦斯煤流固耦合三轴渗流实验装置对取自平顶山十矿和袁庄煤矿的煤样进行了瓦斯渗流试验。结果表明:在3种循环加卸路径中,2种煤样的渗透率变化与轴向应力应变曲线具有显著的一致性,循环加卸载作用下,煤样渗透率随着应力的增大和循环次数的增加呈减小趋势;应力卸载和加载对渗透率的影响不同;渗透率受到应力和损伤累积的双重影响。相同应力水平下,煤样经过卸载-加载过程后的渗透率有降低趋势,相对恢复率随着循环次数的增加而先降低后增大,只有应力超过煤样的屈服阶段后才能使渗透率增大。主要结论为:①3种循环加卸载路径下煤样在加载阶段的增透率随应力增大和循环次数的增加都可以分为3个阶段且呈增长趋势,单位体积变化引起的渗透率增加在变大,循环荷载的增透效果随着循环次数的增加而增强。②随着峰值应力的增大和煤样中损伤的累积,渗透率对应力的敏感性逐渐降低。随着荷载的施加,应力卸载对渗透率的影响先增强后减弱。③通过计算各循环阶段的加卸载响应比得到了煤样损伤变量的演化规律,通过回归分析可知损伤变量与轴向应力之间的关系可以用Boltzmann函数表征,该函数可以作为损伤的经验公式对实验中煤样的损伤进行预测计算。④循环加卸载对煤样渗透率及损伤的作用受煤种不同的影响不明显。研究结果为深入揭示多重保护下煤层增透机制和基于循环荷载致裂(重复水力压裂等)的煤层强化增透机制及瓦斯抽采工程设计提供理论支撑。  相似文献   

11.
加卸载条件下煤岩变形特性与渗透特征的试验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
许江  李波波  周婷  刘东  程立朝  曹偈 《煤炭学报》2012,37(9):1493-1498
以原煤为研究对象,利用自主研制的含瓦斯煤热流固耦合三轴伺服渗流试验系统,采用加轴压、卸围压的应力控制方式开展煤岩加卸载试验,分析加卸载条件下煤岩变形特性和渗透特征的演化规律。研究结果表明:① 加卸载试验峰值强度明显低于常规三轴压缩试验峰值强度,在加卸载过程中,主应力差有一个明显增加趋势,卸载第2阶段速率越大,其曲线斜率也越大,但峰值强度越小,对应的径向应变ε3 、体积应变εV增加速率也越快,而到峰值后破坏阶段,均呈下降趋势。② 加卸载过程中,煤岩渗透率、应力差与应变关系可以分为3个阶段,初始压密和屈服阶段、屈服后阶段、破坏失稳阶段。试件达到峰值后瓦斯渗透率出现突然小幅度上升,持续一段时间后,渗透率出现急剧陡增趋势。③ 煤岩渗透率的变化与煤岩的变形损伤演化过程密切相关,渗透率随变形的增大均呈二次多项式函数递增。  相似文献   

12.
分阶段卸载条件下突出煤变形特征与渗流特性   总被引:2,自引:0,他引:2       下载免费PDF全文
袁曦  张军伟 《煤炭学报》2017,42(6):1451-1457
为研究下保护层开采过程中采动应力作用下含瓦斯突出煤的渗流特性,利用自制的三轴渗流试验机,进行了恒定轴压卸围压、增大轴压卸围压、轴压围压同时卸载等3种不同加卸载条件下的分阶段卸围压煤样瓦斯渗流试验。试验结果表明:试验中煤样的变形具有明显的阶梯状特性,煤样未破坏时,应变增量随着围压卸载速率的增大而增大。随着围压的卸载,恒定轴压卸围压组和增大轴压卸围压组煤样的偏应力不断增大,其渗透率则呈现出先减小后增大的趋势,而轴压和围压同时卸载组煤样的渗透率则随着围压的卸载,呈现出不断增大的趋势。煤样体积应变变化量较大时,渗透率变化量也大。从能量的角度分析渗透率的变化,发现煤样渗透率均随能量耗散率的增大而呈指数增大。  相似文献   

13.
深部煤层开采过程中,多重因素影响着煤体损伤-渗透特性.为揭示采动煤体损伤-渗透特性演化规律,开展了不同工程条件代表的恒围压加轴压(路径1)、恒轴压卸围压(路径2)和同时加轴压卸围压(路径3)3种力学路径下煤体损伤-渗透实验,分析加卸载方式、轴压加载速率、围压卸荷速率以及围压等因素对型煤煤体损伤-渗透特性的影响规律.结果...  相似文献   

14.
张军伟  姜德义  赵云峰  陈结  李林 《煤炭学报》2015,40(12):2820-2828
采用恒定轴压以不同卸荷速率分阶段卸围压的方式,分别对初始围压不同的三组煤样进行卸荷试验,然后对比分析了构造煤常规三轴加载和分阶段卸荷试验的应力-应变曲线特征,并从能量演化的角度分析了分阶段卸荷过程中煤样的能量变化规律。试验结果表明,构造煤分阶段卸围压试验的力学强度和变形能力明显小于常规三轴加载试验。分阶段卸荷过程中构造煤的偏应力和应变变化均呈现明显的阶梯状。在卸荷段,围压对试件的变形起到了限制作用,围压越大,应变增量越小、卸荷段越多;卸荷速率通过改变围压卸荷量影响应变变化,但相同卸荷速率时,围压越大应变增量越小;在恒压段,试件的应变变化呈现蠕变特征,通过数据拟合得到了其叠加开尔文体的蠕变方程。分阶段卸围压过程中,围压卸荷诱发弹性应变能持续释放,煤样吸收的总能量不断增加,其转化的耗散能也不断增大;围压卸荷速率越大,弹性应变能释放越快,耗散能变化率也越大,煤样强度衰减也更快;并且相同卸荷速率条件下,围压越小弹性应变能变化率也较小。  相似文献   

15.
循环载荷作用下煤体渗透率演化的实验分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘永茜 《煤炭学报》2019,44(8):2579-2588
多期次载荷作用下的煤体,其孔隙结构会发生复杂变化,渗透率也随之改变。然而,不同加卸载速率与循环周期决定着煤体渗透率变化路径,影响其应力敏感性,开展循环载荷控制下煤体渗透率演化规律研究,对于解释复杂应力场下煤层渗透率的各向异性特征有理论支撑作用。借助于煤层渗透率应力敏感模型分析,研究了影响煤体渗透率变化的关键表征参数及其函数关系;为验证关键参数对煤体渗透率影响,采用预定轴压和气压、加卸载围压的方式开展煤体三轴循环变载气体渗流实验,分析在不同围压(2.0~12.0 MPa)下煤体渗透率和体应变的演化规律;为研究煤体孔隙结构变化对渗透率的影响,通过低温氮气吸附实验和荧光显微镜煤样观测统计,完成了循环载荷加卸载前后煤体孔隙结构变化对比。研究结果表明,煤体加载/卸载过程中渗透率变化趋势与围压变化负相关,总体可以分为线性段、指数段和稳定段等3个阶段;随循环加载次数的增加煤体应变逐步增大,而渗透率却随之降低;相同条件下,煤体渗透率随体应变增加而升高,增幅在16.79%以上,而渗透率恢复率逐步降低,且与围压变化负相关;3次循环加卸载实验导致煤体孔隙结构发生了显著变化,微孔体积提高71.79%,比表面积增加52.19%,而平均孔径降低32.06%,但循环载荷没有改变煤体的最可几孔径;孔隙结构变化的数据表明,微孔体积增加是煤体渗透率劣化的重要标志之一。对比循环载荷作用前后的孔隙结构实验数据发现,影响气体吸附-解吸的孔隙结构变化,决定了"迟滞环"面积,而决定"迟滞环"形状的关键因素是由煤体最可几孔径控制的突变压力。另外,煤体应变包括裂隙体积变化和孔隙体积变化两部分,其中裂隙影响重要度指标(χ)反映了裂隙体积变化在煤体应变中的权重关系,χ变化随围压升高而降低。  相似文献   

16.
蒋长宝  黄滚  黄启翔 《煤炭学报》2011,36(12):2039-2042
以重庆松藻煤电有限责任公司的典型煤与瓦斯突出矿井--打通一矿7号煤层为研究对象,利用自行研制的“含瓦斯煤热流固耦合三轴伺服渗流试验装置”,进行了不同初始围压和不同瓦斯压力组合条件下,含瓦斯煤多级式卸围压变形破坏及渗透率演化规律实验研究。研究结果表明:开始卸围压后,煤岩并不是立即被破坏失稳,而是维持在σu1一段时间,经历n级卸围压作用后才会失稳;在煤样失稳前,每一级卸围压过程中煤样的变形和渗透率变化速度都是不一样的,均呈加速增大的趋势;在每一级围压恒定阶段,随着围压的降低,煤岩的蠕变速度和渗透率也均是加速增大的;卸围压阶段比围压恒定阶段变形和渗透率增大速度快得多;无论是卸围压过程还是恒定围压阶段,围压降低引起的横向变形的变化速度均大于轴向变形的变化速度。  相似文献   

17.
锦屏深部大理岩蠕变特性及分数阶蠕变模型   总被引:1,自引:0,他引:1       下载免费PDF全文
为保障锦屏地下实验室(CJPL)硐室群的长期稳定性,开展2 400 m深埋大理岩蠕变特性的研究,在常规三轴压缩试验的基础上进行分级加载蠕变试验,系统分析了大理岩蠕变过程中的轴向与环向变形规律及不同围压(5 MPa和64 MPa)下大理岩蠕变特征差异,采用等时应力-应变曲线法确定了大理岩的长期强度,并基于分数阶导数改进了大理岩蠕变模型。研究表明:13,27 MPa围压下,大理岩轴向应力应变曲线达到峰值应力后快速跌落,40,53,64 MPa围压下,峰值应力附近的应变曲线呈现明显的平台段,表明CJPL深部大理岩变形行为随着围压的增加具有由脆性向延性转化的趋势;无论是低围压还是高围压,相比于低应力水平,高应力水平下大理岩更容易发生蠕变变形且环向蠕变现象更加显著,蠕变过程中的扩容现象也更加明显,试样破坏时64 MPa围压条件下的体积蠕变变形为5 MPa围压下的16. 3倍;在蠕变加载过程中,大理岩变形模量均为先增加后减小。变形模量增加阶段,高围压下增加幅度较低围压小,64 MPa围压下试样变形模量增加的幅值为1. 8 GPa,小于5 MPa围压下的3. 6 GPa,表明试样受高围压作用已经部分压密。随着应力水平的增大,变形模量减小,高围压下减小幅度较低围压更大,围压64 MPa下试样变形模量减小幅值为9. 4 GPa,约为峰值变形模量的22%,围压5 MPa下试样减小幅值仅为1. 8 GPa,约为峰值变形模量的4%,表明高围压试样在破坏前裂纹的产生和扩展更为剧烈,岩石劣化程度更大;相同偏应力条件下,围压越大的试样蠕变速率越小,但破坏时变形更大且扩容现象显著,表明相同外荷载条件下,深部围岩赋存环境应力水平较高,变形难以收敛,易发生时效大变形破坏;围压为5,64 MPa时,采用等时应力-应变曲线法确定大理岩长期强度分别为170,290 MPa,为相应围压三轴压缩强度的82%,73%;基于分数阶导数,改进了大理岩黏弹塑性损伤蠕变模型,该模型具有形式简单同时能够很好的描述大理岩蠕变过程中的非线性加速特征的特点。  相似文献   

18.
赵洪宝  汪昕 《煤炭学报》2012,37(2):259-263
以肥煤制作的型煤试件为研究对象,对其在一定围压和瓦斯压力下的三轴压缩力学特性、不同起始应力点卸轴压时的力学特性进行了试验研究。结果表明:三轴压缩试验型煤试件的变形特点、变形阶段分布与原煤非常相似,而尤以压密阶段和线弹性阶段为最;卸轴压过程中,煤样的变形特性呈非线性特点;随着起始应力点的升高,煤样变形的非线性呈增加趋势,卸轴压过程中的平均弹性模量呈下降趋势,瓦斯压力对煤样变形的影响呈增加趋势;在一定围压和瓦斯压力作用下,煤样卸轴压过程中轴向应力-轴向应变关系可用指数关系表示。  相似文献   

19.
张婧  王东  刘长武 《矿冶工程》2015,35(6):11-15
对3种典型岩石分别进行了峰后循环加卸载试验和峰后振动试验, 研究了围压对岩石变形和弹性模量的影响。结果表明:抗压强度随峰后循环加载静荷载次数增加而衰减, 弹性模量在循环加载中也出现软化现象; 峰后每个循环的卸载过程及加载初期无明显声发射现象, 在应力加载到新峰值的60%~90%时才开始出现声发射激增现象, 使用“应变历史”作为凯瑟效应判断标准可以较好地解释这一现象; 在振动荷载作用下, 围压的初步增加对粉砂岩和花岗岩的损伤闭合有积极作用, 但进一步增加会抑制粉砂岩损伤的继续闭合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号