首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
由于地质成因与孔裂隙结构的差异,不同阶煤的渗透性与驱替开采CH 4效果不同。为研究超临界CO 2在不同变质程度煤体中驱替开采CH 4的效果,利用尺寸为100 mm×100 mm×200 mm的原煤试件,在恒定的温压(50℃,25 MPa)条件下,以10 MPa超临界CO 2驱替压力对4种不同变质程度的煤(弱黏煤、气煤、1/3焦煤和无烟煤)展开试验研究,结果表明:①不同煤阶煤体的孔隙形态与发育程度有较大差异,弱黏煤孔隙类型以墨水瓶型为主,无烟煤孔隙为狭缝型,而气煤与1/3焦煤则为楔形或平行板孔;对比孔隙比表面积,无烟煤与弱黏煤相对较高,分别为259.6510,154.0669 m 2/g,而气煤与1/3焦煤较低,分别为71.2359,41.4201 m 2/g;②煤渗透率受成矿地质环境和构造活动等导致的煤体结构、变质程度、裂隙发育程度、煤岩组成等多种因素的影响,在相同的有效应力下,4种测试煤样渗透率随变质程度升高而逐渐降低,驱替过程中CO 2注入量也随变质程度升高而降低,在25 MPa围压、10 MPa注入压力条件下,弱黏煤、气煤、1/3焦煤和无烟煤的渗透率分别为4.58×10-18,2.75×10-18,0.91×10-18和0.05×10-18 m 2,驱替实验结束时,CO 2注入量分别为18.13,6.45,5.01和0.78 mol;③4种煤试件的CH 4产出率和CO 2储存量均表现为气煤>1/3焦煤>弱黏煤>无烟煤,孔隙以楔形或平行板孔为主、比表面积较低、渗透率中等的气煤与1/3焦煤驱替置换效果相对较好,反映了超临界CO 2驱替开采CH 4效果是不同变质程度煤孔隙形态、发育程度以及渗透率的综合表现。  相似文献   

2.
煤层处置二氧化碳模拟实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为了研究CO2在煤层中的储存能力与置换驱替CH4特性,利用沁水煤田潞安矿区3号煤层大尺寸(100 mm×100 mm×200 mm)煤样,在确定应力约束条件下,开展了CO2在煤体中的吸附特性与其在含甲烷煤试样中的驱替实验,并对含甲烷煤和不含甲烷煤中CO2的储存特性做了对比分析。结果表明:在模拟真实地应力(围压=轴压=8 MPa)条件与0.5 MPa注入压力作用下,180min内试验煤样中储存CO2量达11.03 L,CO2在测试煤体中的渗透率随其吸附量的增加而减小;在既定的地应力条件和近于14.93 cm3/g煤层平均瓦斯含量条件下,当CO2注入压力由0.5 MPa提高到1.0 MPa时,CO2在试验煤体中的储存量可提高93.00%、储存率提高13.50%、相应CH4的解吸量提高了18.13%;在实验初期,CH4的解吸量高于CO2的吸附量,随注入过程的持续,煤体中CH4的解吸量逐渐趋于平缓且远小于CO2的吸附量;同等条件下,含CH4煤比不含CH4煤可多储存59.29%的CO2,储存率提高了12.51%。  相似文献   

3.
热力作用下煤层注CO_2驱替CH_4试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究体积应力和温度对于煤层注CO2条件下CH4驱替量的影响规律,利用自制三轴吸附解吸试验装置,对煤试件开展考虑煤层体积应力和温度热力作用影响的与煤层等孔隙压注CO2驱替CH4试验研究。试验结果表明:相同温度条件下,气体吸附量随体积应力增加逐渐减小,下降梯度明显;体积应力是煤层CH4驱替量的主要影响因素,拟合得出20~50℃区间内煤层CH4驱替量随体积应力变化的计算公式。在相同温度条件下,随着体积应力增加,CH4驱替效率逐渐减小,近似于线性变化规律;随着温度升高,CH4驱替效率上升显著且梯度明显。在相同温度条件下,随着体积应力增加,置换体积比相应增加;随着温度升高,置换体积比减小,近似呈等梯度下降规律。  相似文献   

4.
利用自主研发的MCQ-Ⅱ型煤层瓦斯驱替试验装置,对原煤大尺寸(100 mm×100 mm×200 mm)试件,进行了恒定温压(25 ℃,31 MPa)条件下CO2在贫煤、贫瘦煤和弱黏煤3种煤阶煤中的注入储存试验,对CO2注入储存过程中煤体膨胀变形特性进行了测量分析;并对小尺寸(6 mm×6 mm×6 mm)原煤试件通过CT扫描,研究了3种煤样的微观结构特征。主要结果为:对最小观测尺度为4.5 μm的CT重建图像,通过统计分析,发现贫煤孔隙率(4.67%)小于贫瘦煤孔隙率(5.39%)小于弱黏煤孔隙率(12.10%);在31 MPa体积应力约束条件下,持续12 h的CO2注入过程中,煤体膨胀变形受孔隙压力与CO2吸附变形的共同作用,且体积膨胀百分比与CO2注入储存量呈线性关系;在注入储存相同量气态CO2条件下,贫煤体积膨胀应变大于弱黏煤大于贫瘦煤;由于煤体层理性结构特征,弹性模量在垂直与平行层理2个方向上的差异性,煤体在垂直层理方向膨胀应变大于平行层理方向应变,且2个方向膨胀应变均与CO2储存量呈线性关系。  相似文献   

5.
梁卫国  张倍宁  黎力  贺伟 《煤炭学报》2018,43(10):2839-2847
在简述煤层气开采技术发展历程基础上,针对煤层气抽放开采率低的问题,提出了注能改性驱替开采煤层气技术,并从有效应力与热力学原理,能量平衡理论等方面进行了可行性分析。通过自主研发系列实验设备,对大尺寸、低渗透煤样进行了不同应力与温度条件下的渗透与驱替置换实验,揭示了注CO_2驱替开采煤层气的机理、规律与特征。研究结果表明:CO_2在煤体表面的吸附势大于CH_4,CO_2吸附引起的煤体表面自由能变化和吸附热均强于CH_4,注能(CO_2)有助于煤层气采收率提高;在一定的约束应力条件下,注入压力升高,CO_2吸附引起的煤体表面自由能变化和吸附热升高,同时作用在煤体上的有效应力降低,煤体的渗透性增强,CO_2驱替置换效果提高,反之,注入压力不变约束应力增大,有效应力增加,煤体渗透率降低,驱替置换效果变差;煤体对超临界态CO_2有很强的吸附性,在较大的有效应力和较低渗透率条件下,依然能保持较高的CO_2/CH_4置换率;提高注入CO_2温度,有助于部分吸附CH_4解吸,但同时煤体对CO_2吸附能力也减弱,导致CO_2/CH_4置换率有所降低。  相似文献   

6.
侯东升  梁卫国  张倍宁  李畅 《煤炭学报》2019,44(11):3463-3471
CO2驱替开采煤层气过程中,由于CO2和CH4的竞争吸附,CO2/CH4混合气体在运移时CH4体积分数会不断发生改变,进而影响煤体变形和渗透特性。利用自主研发的三轴渗流系统,采用稳态渗流法对焦煤样进行单一组分气体(He,CH4和CO2)和不同配比的CH4/CO2混合气渗流试验。渗流过程中保持温度和体积应力(30 ℃、33 MPa)恒定,并利用LVDT测量煤体的轴向变形。结果表明:① He和不同配比CH4/CO2混合气的渗流过程均受滑脱效应的影响,气体渗透率随入口压力增大呈先减小后缓慢增大的变化;对于非吸附He,入口压力Symbol|@@2 MPa时滑脱效应对气测渗透率的影响要远远大于有效应力效应;② 在一定的体积应力条件下,不同配比CH4/CO2混合气体吸附引起的煤体膨胀应变随入口压力增加而增大,变化规律符合Langmiur方程,且在相同入口压力条件下,混合气体中CO2浓度越高,煤体膨胀应变越大;③ 在考虑有效应力效应、吸附膨胀应变对渗透率的动态影响以及滑脱因子b随煤体渗透率变化的基础上,建立了煤体气测渗透率理论模型,该模型能够描述不同配比CH4/CO2混合气体以及He渗透率随入口压力的变化;④ 随着煤储层CH4/CO2混合气体压力增大或者CO2体积分数升高,基质膨胀应变对煤体渗透率的影响逐渐减小。煤体中靠近孔裂隙的基质吸附膨胀对渗透率的影响(β)随入口压力的增加逐渐减小;CH4/CO2混合气体中CO2体积分数越高,β减小速率越大。  相似文献   

7.
不同煤阶煤体吸附储存CO_2膨胀变形特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
贺伟  梁卫国  张倍宁  李子文  黎力 《煤炭学报》2018,43(5):1408-1415
利用自主研发的气体等温吸附装置并辅以TST3827动静态应变测试系统,针对4种不同煤阶的煤样试件,在恒定温度(50℃)不同吸附压力条件下,研究了不同煤阶煤样CO_2吸附特性及煤样的吸附变形规律。结果表明:煤体CO_2吸附量与煤阶密切相关,在相同的吸附压力条件下,CO_2吸附量随着煤阶的增大而增大;不同煤阶煤样的等温吸附曲线类似,煤样的CO_2过剩吸附量随吸附压力变化曲线呈现出先升高后降低的特点,在8 MPa左右达到最大值;不同煤阶煤体吸附CO_2后引起的变形也具有类似的变化趋势,即随着CO_2压力的增大,体积应变先增大后趋于稳定,体积应变可以用引入CO_2密度的DR模型进行描述,且随着煤阶的增大,体积应变逐渐减小;由于煤体层理结构特征,煤体在垂直于层理方向的应变约为平行于层理方向应变的1.8~2.3倍;煤体体积应变与绝对吸附量在气态CO_2中呈线性增长关系,当CO_2达到超临界状态以后随着绝对吸附量增加体积应变趋于稳定,且煤体吸附相同量CO_2产生的体积应变随煤阶的增大而减小。  相似文献   

8.
二氧化碳驱替煤层瓦斯研究现状与发展   总被引:2,自引:0,他引:2  
二氧化碳是主要的温室效应气体,二氧化碳煤层地质处置具有废物处置和置换瓦斯的双重效益。研究结果表明:煤体属于孔隙、裂隙发育的双重介质,为二氧化碳煤层地质储存提供了物理基础;同时,在相同外部边界条件下,煤对二氧化碳的吸附量是瓦斯的2倍~8倍,二者在煤层中存在竞争吸附,因此,用二氧化碳驱替煤层瓦斯理论上是可行的。但是,由于煤体的渗透性和吸附性均与温度、压力等外部条件密切相关,必须进行大煤样试件对瓦斯、二氧化碳气体的渗透性、吸附性研究,才能为二氧化碳煤层地质处置、驱替瓦斯提供可行性依据。  相似文献   

9.
CO2置换CH4试验中煤体应变及渗透率的变化   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究煤层注CO2置换CH4过程中煤体应变及渗透率的变化特征,采用沁水煤田屯留矿3号煤层圆柱体原煤试样,在不同围压(8~20 MPa)及注入压力(1~6 MPa)条件下,进行注CO2置换煤层CH4试验。研究表明:置换试验中,煤样的轴向、径向及体积应变随有效应力的增加呈指数关系降低,随围压的增加而降低;同时随围压的增加,相同压降范围内的轴向、径向、体积应变降幅呈增大趋势;且相同围压条件下,径向应变大于轴向应变。试验同时发现,同一围压下,受有效应力效应、基质收缩效应及滑脱效应等作用影响,煤体渗透率随着有效应力的增加呈现先降低后增加的变化关系;相同有效应力条件下,渗透率随着围压的增大而减小;且在试验压力范围内,有效应力增加后期渗透率相对初期提高了8.53%~22.45%。  相似文献   

10.
为分析注入超临界CO2后,其对低渗透煤的作用,进行了超临界CO2抽提低渗透煤试验及超临界CO2抽提前后煤样的显微CT扫描试验。结果表明:该试验验证了超临界CO2对提高煤层低渗透性的可行性。由于超临界CO2的超强萃取作用,煤基质内少量的极性较低的碳氢化合物和类脂有机化合物被萃取,使煤体孔隙、裂隙增加。根据对超临界CO2试验前后煤样的显微CT扫描试验结果,直观地揭示了超临界CO2试验使低渗透煤内孔隙、裂隙发育程度增大,这充分证明超临界CO2有利于提高煤体渗透性,降低高瓦斯低渗透煤田的瓦斯灾害事故。  相似文献   

11.
深部煤层井组注入CO2开采煤层气技术主要通过CO2的强吸附效应,能够置换出更多的CH4,同时实现CO2的长期大量的埋藏。通过试验分析,柿庄北地区CO2的吸附能力是CH4的2倍,随着解吸压力的降低,CH4比CO2会更快的解吸,能够有效的置换CH4。CO2的注入引起煤储层物性的变化,主要是由于CO2的吸附和解吸引起的基质膨胀与收缩效应造成渗透率的变化,并且呈现随着压力的降低先降低后迅速增加的变化规律。基于渗透率变化规律,应用模拟软件建立地质模型和数值模型,分析了CO2注入量、频率和注入方式对井组或单井的产量、采收率和CO2埋藏量的影响。模拟结果认为注入量10~15 t/d,连续注入90 d,关井90 d,反复实施2 a后,可以实现采收率的提高。通过现场试验验证,该区3号煤层吸附CO2的能力在8 t/d,井组的埋藏潜力约为12 616 t。  相似文献   

12.
阜新煤田注二氧化碳提高煤层甲烷的研究   总被引:3,自引:1,他引:2  
针对阜新煤田煤储层的地质特征,选取了刘家煤层气勘探区和东梁矿2个地点,开展了注二氧化碳置换煤层甲烷的试验模拟研究.试验结果表明,二氧化碳的吸附能高于甲烷的吸附能,它可以将甲烷从煤的微表面置换出来,从而提高煤层甲烷的采出率.在置换过程中总是吸附能力弱的甲烷首先解吸,而吸附能力强的二氧化碳最后解吸,而且较高压力下的置换效果总比低压下的好.与东梁矿煤样相比,刘家煤样具有较强的吸附能力和较高的单位压降下的解吸率,但置换效率相差不大,主要原因是二者的二氧化碳对甲烷分离因子差别较小.注气试验时应该充分考虑注入压力点和气体注入量才能保证满意的置换效果.  相似文献   

13.
甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为   总被引:4,自引:0,他引:4       下载免费PDF全文
采用容量法确定吸附量的方法,基于Fick第二定律,在吸附平衡压力约为1.4 MPa,温度为35~65 ℃的实验条件下,研究了甲烷(CH4)和二氧化碳(CO 2)在不同煤阶煤内部的吸附扩散行为。研究结果表明:Fick第二定律能够很好地描述CH 4及CO 2在不同煤阶煤内部的扩散行为;CH 4和CO 2有效扩散系数随着吸附温度的升高而增大,同时有效扩散系数和煤阶(利用镜质组最大反射率R o,max表征)之间呈现“U”形关系;相同条件下,同种煤样的CO 2有效扩散系数高于CH 4;CH 4和CO 2在不同煤阶煤内部的扩散主要受微孔内部的表面扩散控制。  相似文献   

14.
基于热力学方法的煤岩吸附变形模型   总被引:2,自引:0,他引:2       下载免费PDF全文
基于吸附过程的热动力学和能量守恒原理,建立了计算煤岩吸附气体引起的煤岩膨胀应变的理论模型,在获取煤岩对气体的吸附等温曲线的基础上,可通过模型得到煤岩吸附气体引起的吸附应变;利用已有的实验数据对模型的有效性进行了验证。结果表明,实验结果与模型预测的结果吻合较好,模型能够很好地描述煤岩吸附不同气体时产生的差异性膨胀现象;另外,模型可为预测CO2注入煤层后煤基质收缩/膨胀效应对储层渗透率的影响提供指导。  相似文献   

15.
为了实现ECBM实验研究和数值模拟结合分析,基于实验室应力条件的渗透率模型,建立了煤孔隙裂隙介质系统的CO2驱替煤层CH4的数值模型。开展了不同CO2注入压力下煤样尺度的二氧化碳驱替煤层气的数值模拟。结果表明:CO2的注入压力越大,注入后CO2从煤样末端流出所需时间越小;CO2的注入会引起煤的渗透率减小,注入压力较小时渗透率变化分为三个阶段,包括有效应力影响的阶段、CH4压力不变的阶段和CO2吸附影响阶段,但是当注入压力较大时则不存在CH4压力不变的阶段;注入压力增大,CH4产出量在注入CO2后的一定时间内有很大提高,然后在注气后期,CH4产出量反而较小。上述结果对指导室内开展ECBM实验和分析ECBM室内实验的结果具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号