首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This letter presents a circuit to provide binary phase shift keying to ultra-wideband (UWB) impulse transmitters. The circuit is based on a Gilbert-cell multiplier and uses active on-chip balun and unbalanced-to-balanced converters for single-ended to single-ended operation. Detailed measurements of the circuit show a gain ripple of $pm 1~{rm dB}$ at an overall gain of $-2~{rm dB}$, an input reflection below $-12~{rm dB}$, an output reflection below $-18~{rm dB}$, a group delay variation below 6 ps and a $-1~{rm dB}$ input compression point of more than 1 dBm in both switching states over the full 3.1–10.6 GHz UWB frequency range. A time domain measurement verifies the switching operation using an FCC-compliant impulse generator. The circuit is fabricated in a $0.8~mu {rm m}$ Si/SiGe HBT technology, consumes 31.4 mA at a 3.2 V supply and has a size of $510 times 490~mu{rm m}^{2}$ , including pads. It can be used in UWB systems using pulse correlation reception or spectral spreading.   相似文献   

2.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

3.
This letter presents a high conversion gain double-balanced active frequency doubler operating from 36 to 80 GHz. The circuit was fabricated in a 200 GHz ${rm f}_{rm T}$ and ${rm f}_{max}$ 0.18 $mu$m SiGe BiCMOS process. The frequency doubler achieves a peak conversion gain of 10.2 dB at 66 GHz. The maximum output power is 1.7 dBm at 66 GHz and ${-}3.9$ dBm at 80 GHz. The maximum fundamental suppression of 36 dB is observed at 60 GHz and is better than 20 dB from 36 to 80 GHz. The frequency doubler draws 41.6 mA from a nominal 3.3 V supply. The chip area of the active frequency doubler is 640 $mu$m $,times,$424 $mu$m (0.272 mm $^{2}$) including the pads. To the best of authors' knowledge, this active frequency doubler has demonstrated the highest operating frequency with highest conversion gain and output power among all other silicon-based active frequency doublers reported to date.   相似文献   

4.
A 23 GHz electrostatic discharge-protected low-noise amplifier (LNA) has been designed and implemented by 45 nm planar bulk-CMOS technology with high-$Q$ above-IC inductors. In the designed LNA, the structure of a one-stage cascode amplifier with source inductive degeneration is used. All high- $Q$ above-IC inductors have been implemented by thin-film wafer-level packaging technology. The fabricated LNA has a good linearity where the input 1 dB compression point $({rm IP}_{{-}1~{rm dB}})$ is ${- 9.5}~{rm dBm}$ and the input referred third-order intercept point $(P _{rm IIP3})$ is ${+ 2.25}~{rm dBm}$. It is operated with a 1 V power supply drawing a current of only 3.6 mA. The fabricated LNA has demonstrated a 4 dB noise figure and a 7.1 dB gain at the peak gain frequency of 23 GHz, and it has the highest figure-of-merit. The experimental results have proved the suitability of 45 nm gate length bulk-CMOS devices for RF ICs above 20 GHz.   相似文献   

5.
A 2 to 40 GHz broadband active balun using 0.13 $mu{rm m}$ CMOS technology is presented in this letter. Using two-stage differential amplified pairs, the active balun can achieve a wideband performance with the gain compensation technique. This active balun exhibits a measured small signal gain of ${0} pm{1}~{rm dB}$, with the amplitude imbalances below 0.5 dB and the phase differences of ${180} pm {10} ^{circ}$ from 2 to 40 GHz. The core active balun has a low power consumption of 40 mW, and a compact area of 0.8 mm $times,$ 0.7 mm. This proposed balun achieved the highest operation frequency, the widest bandwidth, and the smallest size among all the reported active baluns.   相似文献   

6.
A four-element phased-array front-end receiver based on 4-bit RF phase shifters is demonstrated in a standard 0.18- $mu{{hbox{m}}}$ SiGe BiCMOS technology for $Q$-band (30–50 GHz) satellite communications and radar applications. The phased-array receiver uses a corporate-feed approach with on-chip Wilkinson power combiners, and shows a power gain of 10.4 dB with an ${rm IIP}_{3}$ of $-$13.8 dBm per element at 38.5 GHz and a 3-dB gain bandwidth of 32.8–44 GHz. The rms gain and phase errors are $leq$1.2 dB and $leq {hbox{8.7}}^{circ}$ for all 4-bit phase states at 30–50 GHz. The beamformer also results in $leq$ 0.4 dB of rms gain mismatch and $leq {hbox{2}}^{circ}$ of rms phase mismatch between the four channels. The channel-to-channel isolation is better than $-$35 dB at 30–50 GHz. The chip consumes 118 mA from a 5-V supply voltage and overall chip size is ${hbox{1.4}}times {hbox{1.7}} {{hbox{mm}}}^{2}$ including all pads and CMOS control electronics.   相似文献   

7.
A low-power fully integrated low-noise amplifier (LNA) with an on-chip electrostatic-static discharge (ESD) protection circuit for ultra-wide band (UWB) applications is presented. With the use of a common-gate scheme with a ${rm g}_{rm m}$ -boosted technique, a simple input matching network, low noise figure (NF), and low power consumption can be achieved. Through the combination of an input matching network, an ESD clamp circuit has been designed for the proposed LNA circuit to enhance system robustness. The measured results show that the fabricated LNA can be operated over the full UWB bandwidth of 3.0 to 10.35 GHz. The input return loss $({rm S}_{11})$ and output return loss $({rm S}_{22})$ are less than ${-}8.3$ dB and ${-}9$ dB, respectively. The measured power gain $({rm S}_{21})$ is $11 pm 1.5$ dB, and the measured minimum NF is 3.3 dB at 4 GHz. The dc power dissipation is 7.2 mW from a 1.2 V supply. The chip area, including testing pads, is 1.05 mm$,times,$ 0.73 mm.   相似文献   

8.
A linearization technique is proposed in which low-frequency second-order-intermodulation $({rm IM}_{2})$ is generated and injected to suppress the third-order intermodulation $({rm IM}_{3})$. The proposed linearization technique is applied to both a low-noise amplifier (LNA) and a down-conversion mixer in an RF receiver front-end (RFE) working at 900 MHz. Fabricated in a 0.18$ mu{hbox{m}}$ CMOS process and operated at 1.5 V supply with a total current of 13.1 mA, the RFE delivers 22 dB gain with 5.3 dB noise figure (NF). The linearization technique achieves around 20 dB ${rm IM}_{3}$ suppression and improves the RFE's ${rm IIP}_{3}$ from $-$ 10.4 dBm to 0.2 dBm without gain reduction and noise penalty while requiring only an extra current of 0.1 mA.   相似文献   

9.
A 17 GHz low-power radio transceiver front-end implemented in a 0.25 $mu{hbox {m}}$ SiGe:C BiCMOS technology is described. Operating at data rates up to 10 Mbit/s with a reduced transceiver turn-on time of 2 $mu{hbox {s}}$, gives an overall energy consumption of 1.75 nJ/bit for the receiver and 1.6 nJ/bit for the transmitter. The measured conversion gain of the receiver chain is 25–30 dB into a 50 $Omega$ load at 10 MHz IF, and noise figure is 12 $pm$0.5 dB across the band from 10 to 200 MHz. The 1-dB compression point at the receiver input is $-$37 dBm and ${hbox{IIP}}_{3}$ is $-$25 dBm. The maximum saturated output power from the on-chip transmit amplifier is $-$1.4 dBm. Power consumption is 17.5 mW in receiver mode, and 16 mW in transmit mode, both operating from a 2.5 V supply. In standby, the transceiver supply current is less than 1 $mu{hbox {A}}$.   相似文献   

10.
A 2.45/5.2 GHz dual-band Gilbert downconversion mixer with image rejection function is presented, which is implemented using the 0.18 $mu$m CMOS technology. The proposed differential dual-band image rejection circuitry is employed for the 2.45/5.2 GHz WLAN application to effectively diminish the dc power consumption and complexity of circuit design compared to the traditional Hartley or Weaver architectures. Moreover, the cross-connected pair consisted of NMOS and PMOS transistors in the proposed notch filter will further ameliorate the image rejection capability. The IC prototype achieves conversion gain of $10.5/11$ dB, IIP3 of ${-}4.9/-5.2$ dBm for ${rm RF}= 2.45/5.2$ GHz and ${rm IF}=500$ MHz while the image rejection ratio is better than 36/45 dB in the whole operation bandwidth.   相似文献   

11.
We present the design and measurement results of millimeter-wave integrated circuits implemented in 65-nm baseline CMOS. Both active and passive test structures were measured. In addition, we present the design of an on-chip spiral balun and the transition from CPW to the balun and report transistor noise parameter measurement results at V-band. Finally, the design and measurement results of two amplifiers and a balanced resistive mixer are presented. The 40-GHz amplifier exhibits 14.3 dB of gain and the 1-dB output compression point is at $+$6-dBm power level using a 1.2 V supply with a compact chip area of 0.286 ${hbox{mm}}^{2}$. The 60-GHz amplifier achieves a measured noise figure of 5.6 dB at 60 GHz. The AM/AM and AM/PM results show a saturated output power of $+$7 dBm using a 1.2 V supply. In downconversion, the balanced resistive mixer achieves 12.5 dB of conversion loss and $+$5 dBm of 1-dB input compression point. In upconversion, the measured conversion loss was 13.5 dB with $-$19 dBm of 1-dB output compression point.   相似文献   

12.
A Fully Integrated 5 GHz Low-Voltage LNA Using Forward Body Bias Technology   总被引:2,自引:0,他引:2  
A fully integrated 5 GHz low-voltage and low-power low noise amplifier (LNA) using forward body bias technology, implemented through a 0.18 $mu{rm m}$ RF CMOS technology, is demonstrated. By employing the current-reused and forward body bias technique, the proposed LNA can operate at a reduced supply voltage and power consumption. The proposed LNA delivers a power gain (S21) of 10.23 dB with a noise figure of 4.1 dB at 5 GHz, while consuming only 0.8 mW dc power with a low supply voltage of 0.6 V. The power consumption figure of merit $(FOM_{1})$ and the tuning-range figure of merit $(FOM_{2})$ are optimal at 12.79 dB/mW and 2.6 ${rm mW}^{-1}$, respectively. The chip area is 0.89 $,times,$0.89 ${rm mm}^{2}$.   相似文献   

13.
In this letter, a low loss high isolation broadband single-port double-throw (SPDT) traveling-wave switch using 90 nm CMOS technology is presented. A body bias technique is utilized to enhance the circuit performance of the switch, especially for the operation frequency above 30 GHz. The parasitic capacitance between the drain and source of the NMOS transistor can be further reduced using the negative body bias technique. Moreover, the insertion loss, the input 1 dB compression point (${rm P} _{{1}~{rm dB}}$), and the third-order intermodulation (IMD3) of the switch are all improved. With the technique, the switch demonstrates an insertion loss of 3 dB and an isolation of better than 48 dB from dc to 60 GHz. The chip size of the proposed switch is 0.68 $,times,$0.87 ${rm mm}^{2}$ with a core area of only 0.32$,times,$0.21 ${rm mm}^{2}$.   相似文献   

14.
Single- and dual-polarized slot-ring antennas with wideband tuning using varactor diodes have been demonstrated. The single-polarized antenna tunes from 0.95 to 1.8 GHz with better than ${-}13$ dB return loss. Both polarizations of the dual-polarized antenna tune from 0.93 to 1.6 GHz independently with better than ${-}10$ dB return loss and $> !20!$ dB port-to-port isolation over most of the tuning range. The capacitance of the varactor diodes varies from 0.45 to 2.5 pF, and the antennas are printed on 70 $,times,$70 $,times,$0.787 mm ${^3}$ substrates with ${epsilon_{rm r} = 2.2}$. The dual-polarized slot-ring antenna can either be made both frequency- and polarization-agile simultaneously, or can operate at two independent frequencies on two orthogonal polarizations. To our knowledge, this is the first dual-polarized tunable antenna with independent control of both polarizations over a 1.7:1 frequency range.   相似文献   

15.
Effects of silicon nitride (SiN) surface passivation by plasma enhanced chemical vapor deposition (PECVD) on microwave noise characteristics of AlGaN/GaN HEMTs on high-resistivity silicon (HR-Si) substrate have been investigated. About 25% improvement in the minimum noise figure $(NF_{min})$ (0.52 dB, from 2.03 dB to 1.51 dB) and 10% in the associate gain $(G_{rm a})$ (1.0 dB, from 10.3 dB to 11.3 dB) were observed after passivation. The equivalent circuit parameters and noise source parameters (including channel noise coefficient $(P)$, gate noise coefficient $(R)$, and their correlation coefficient $(C)$ ) were extracted. $P$ , $R$ and $C$ all increased after passivation and the increase of C contributes to the decrease of the noise figure. It was found that the improved microwave small signal and noise performance is mainly due to the increase of the intrinsic transconductance $(g_{{rm m}0})$ and the decrease of the extrinsic source resistance $(R_{rm s})$.   相似文献   

16.
This paper reports on a post-CMOS compatible micromachining technology for passive RF circuit integration. The micromachining technology combines the formation of high-performance microelectromechanical systems solenoid inductors and metal—insulator—metal (MIM) capacitors by using a post-CMOS process on standard CMOS substrate. Utilizing this process, novel on-chip 3-D configured RF filters for 5 GHz band are integrated on-chip. Two types of compact filters are designed and fabricated, with the layout size of the bandpass filter as 0.65 $,times,$0.67 ${rm mm}^{ 2}$ and that of the low-pass filter as 0.77$,{ times },$1.25 ${rm mm}^{ 2}$. From the measurement results, the fifth-order low-pass filter shows less than 1.06 dB insertion loss up to 5 GHz and ${-}{rm 1.5}~{rm dB}$ cutoff frequency at 5.3 GHz. The bandpass filter is a second-order coupled-resonator type, with measured 4.3 dB minimum insertion loss and better than 13 dB return loss in the pass band. Both simulation and shock testing results have shown that the filters are almost free of influence from environmental vibration and shock. From the measured results in various temperatures, the bandpass filters were found to show lower loss under low temperatures, while the passband shift is negligible in the various temperatures. Together with the fabricated filters, the developed micromachining technique has demonstrated the potential of on-chip integration and miniaturization of passive RF circuits.   相似文献   

17.
This letter presents a 30–100 GHz wideband and compact fully integrated sub-harmonic Gilbert-cell mixer using 90 nm standard CMOS technology. The sub-harmonic pumped scheme with advantages of high port isolation and low local oscillation frequency operation is selected in millimeter-wave mixer design. A distributed transconductance stage and a high impedance compensation line are introduced to achieve the flatness of conversion gain over broad bandwidth. The CMOS sub-harmonic Gilbert-cell mixer exhibits ${-}{hbox{1.5}} pm {hbox{1.5}}$ dB measured conversion gain from 30 to 100 GHz with a compact chip size of 0.35 mm$^{2}$. The OP$_{1 {rm dB}}$ of the mixer is ${-}$ 10.4 dBm and ${-}$9.6 dBm at 77 and 94 GHz, respectively. To the best of our knowledge, the monolithic microwave integrated circuit is the first CMOS Gilbert-cell mixer operating up to 100 GHz.   相似文献   

18.
A 0.55 V supply voltage fourth-order low-pass continuous-time filter is presented. The low-voltage operating point is achieved by an improved bias circuit that uses different opamp input and output common-mode voltages. The fourth-order filter architecture is composed by two Active- ${rm G}_{rm m}{-}{rm RC}$ biquadratic cells, which use a single opamp per-cell with a unity-gain-bandwidth comparable to the filter cut-off frequency. The $-$ 3 dB filter frequency is 12 MHz and this is higher than any other low-voltage continuous-time filter cut-off frequency. The $-$3 dB frequency can be adjusted by means of a digitally-controlled capacitance array. In a standard 0.13 $mu{rm m}$ CMOS technology with ${V}_{THN}approx 0.25 {rm V}$ and ${V}_{THP}approx 0.3 {rm V}$, the filter operates with a supply voltage as low as 0.55 V. The filter $({rm total} {rm area}=0.47 {rm mm}^{2})$ consumes 3.4 mW. A 8 dBm-in-band IIP3 and a 13.3 dBm-out-of-band IIP3 demonstrate the validity of the proposal.   相似文献   

19.
We have developed an $N times N$ cyclic-frequency router with improved performance by employing two types of modified configuration; a uniform-loss and cyclic-frequency (ULCF) arrayed-waveguide grating (AWG) and an interconnected multiple AWG. We have demonstrated a compact 50-GHz-spacing 64 $,times,$64 ULCF-AWG router with low and uniform insertion losses of 5.4–6.8 dB and frequency deviations from the grid of less than $pm {8}~{rm GHz}$. We have also demonstrated a 100-GHz-spacing 8$,times,$8 interconnected multiple-AWG router with a practical configuration, very low and uniform insertion losses of 2.3–3.4 dB, and frequency deviations from the grid of less than $pm {6}~{rm GHz}$. We discuss the suitable or realizable scale $N$ of the two types of routers by comparison with a conventional AWG router in terms of optical and dimensional performance and productivity.   相似文献   

20.
In this letter, the design and measurement of the first SiGe integrated-circuit LNA specifically designed for operation at cryogenic temperatures is presented. At room temperature, the circuit provides greater than 25.8 dB of gain with an average noise temperature $(T_{e})$ of 76 K $(NF=1 {rm dB})$ and $S_{11}$ of $-$ 9 dB for frequencies in the 0.1–5 GHz band. At 15 K, the amplifier has greater than 29.6 dB of gain with an average $T_{e}$ of 4.3 K and $S_{11}$ of $-$14.6 dB for frequencies in the 0.1–5 GHz range. To the authors' knowledge, this is the lowest noise ever reported for a silicon integrated circuit operating in the low microwave range and the first matched wideband cryogenic integrated circuit LNA that covers frequencies as low as 0.1 GHz.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号