首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two‐component suspensions of titania and halloysite nanotubes (HNTs) were prepared in ethanol with 0.5 g/L (optimum concentration) of polyethyleneimine (PEI) and different wt% of HNTs. Kinetics of Electrophoretic deposition (EPD) decreased with increasing the HNTs content in suspensions due to their less mobility compared with titania particles. HNTs reinforced the microstructure of coatings and reduced or completely prevented from cracking during drying and heat‐treatment steps. Removal of methylene blue (MB) via adsorption by HNTs coatings was faster than its photocatalytic degradation by titania coating. Dispersion of HNTs (up to ≈30 wt%) in the matrix of titania resulted in the synergistic catalytic effect in MB removal. The synergistic effect was because of the shorter traveling distance of MB molecules adsorbed on HNTs toward the photocatalytic active site of titania particles in composite coatings. However, the synergistic effect was destroyed with increasing the HNTs content in coating. Difference between the amount of MB removed by titania and composite coatings increased at longer times (≥60 minutes). Mass transfer of MB adsorbed on HNTs toward the photocatalytic active sites of adjacent titania particles can compensate the decline in the mass transfer from solution at longer times.  相似文献   

2.
This work reports the application of an activated clay mineral as adsorbent for the removal of a basic dye, methylene blue (MB), from aqueous solutions. The thermal treatment at 300 °C for 2 h and the acid activation with nitric acid of 0.5 mol/dm3 under reflux conditions improve the adsorption capacity of the raw clay mineral. A maximum of 500 mg/g of MB at equilibrium is achieved. Equilibrium data are mathematically modelled using the Freundlich, Langmuir and Toth isotherm adsorption models.  相似文献   

3.
Phenolic compounds are one of the most representative pollutants in industrial wastewater, and efficient removals of them have attracted significant concerns. In this study, several commercial and new synthetic polymers (acrylonitrile, 1,3‐butadiene, and styrene copolymer (ABS), styrene, acrylonitrile copolymer (SAN), poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA), poly(tert‐butyl acrylate) (ptBA)) with special functionalities were evaluated for their ability to remove phenol from an aqueous solution. Equilibrium studies were conducted in the range of 20–100 mg/L initial phenol concentrations, 3–11 pH solutions, and a temperature range of 25–65°C. The results showed that (styrene, 1,3‐butadiene) copolymer (SAN) gave the best adsorption capacity among all of the polymers tested. The solution temperature, phenol concentration, and agitation rate played a significant role in influencing the capacity of the adsorbents toward phenol molecules. An increase in solution temperature led to a significant increase in the adsorption capacity of SAN. The percentage of adsorption decreased when initial concentration of phenol increased. However, the percentage removal of phenol was observed to increase with agitation. Removal of phenol using polymeric microbeads is difficult to investigate under high and low pH values because it requires a lot of acid or base to adjust the pH values in the adsorption media. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
This work reports the adsorption of strontium from aqueous solutions onto activated carbon. Various factors such as pH, initial concentration of strontium, particle size and temperature were considered. The optimum conditions obtained were: pH value = 4.0, contact time = 8 h, initial concentration of Sr(II) = 100 mg/l, particle size = 270 μm and temperature of 293.15 K. The adsorption of strontium(II) on activated carbon follows pseudo-first order kinetics and the energy of activation Ea calculated using the Arrehenius equation was found to be 3.042 kJ/mol.The adsorption isotherms could be fitted by the Langmuir model with the maximum adsorption capacity Qo being 5.07×10–4 mol/g at 293.15 K. A dimensionless separation factor RL was used to judge the favourable adsorption. The values of the mass transfer coefficient βL (cm/s) at different temperatures indicated that the velocity of mass transfer of Sr(II) ions onto activated carbon was slow. The intraparticle diffusion mechanism is of great importance in determining the overall rate of removal and the negative entropy of activation ΔS# value 145.13 J/mol K, reflects that no significant change occurs in the internal structure of activated carbon during adsorption of strontium(II). The Gibbs free energy ΔG°ads values range from –36.61 kJ/mol to –41.75 kJ/mol at 293.15–333.15 K, which show the physical adsorption properties of activated carbon and indicate the feasibility of the process.  相似文献   

5.
Adsorption has been proven to be the most efficient method for quickly lowering the concentration of dissolved dyes in an effluent. In this regard, activated carbon is the most widely used adsorbent for removal of dyes from aqueous solution. However, the high cost of production and regeneration make it uneconomical. Therefore, inorganic adsorbents (e.g. zeolites) with high surface areas have been used as alternatives to carbon adsorbents. Microporous zeolites ZSM‐5, NH4‐Beta, MCM‐22 and mesoporous materials MCM‐41 have been investigated for the removal of dyes from aqueous solutions and they show effective adsorption performance. SBA‐15 possesses a larger pore size and pore wall thickness than MCM‐41. As a result, SBA‐15 has greater potential for the adsorption of methylene blue with larger molecule size and higher hydrothermal stability than the M41S family. SBA‐15 is an excellent adsorbent for methylene blue (MB), exhibiting 280 mg g?1 adsorption capacity and about 100% fading rate for MB. The adsorptive process is so fast that adsorption equilibrium is achieved in 5 min. In addition, SBA‐15 can be effectively recovered by calcination and reused 10 times without significant loss in removal of MB from aqueous solution. The efficient adsorption of MB molecules onto SBA‐15 was ascribed to MB adsorbed into the pore channels of SBA‐15, which was confirmed by nitrogen physisorption analysis of the adsorbent before and after adsorption. The long reuse life of the adsorbent suggests a high potential for application in industry. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
BACKGROUND: The removal of cationic dyes from wastewater is of great importance. Three zeolites synthesized from coal fly ashes (ZFAs) were investigated as adsorbents to remove methylene blue (MB), a cationic dye, from aqueous solutions. Experiments were conducted using the batch adsorption technique under different conditions of initial dye concentration, adsorbent dose, solution pH, and salt concentration. RESULTS: The adsorption isotherm data of MB on ZFAs were fitted well to the Langmuir model. The maximum adsorption capacities of MB by the three ZFAs, calculated using the Langmuir equation, ranged from 23.70 to 50.51 mg g?1. The adsorption of MB by ZFA was essentially due to electrostatic forces. The measurement of zeta potential indicated that ZFA had a lower surface charge at alkaline pH, resulting in enhanced removal of MB with increasing pH. MB was highly competitive compared with Na+, leading to only a < 6% reduction in adsorption in the presence of NaCl up to 1.0 mol L?1. Regeneration of used ZFA was achieved by thermal treatment. In this study, 90–105% adsorption capacity of fresh ZFA was recovered by heating at 450 °C for 2 h. CONCLUSION: The experimental results suggest that ZFA could be employed as an adsorbent in the removal of cationic dyes from wastewater, and the adsorptive ability of used ZFA can be recovered by thermal treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Halloysite nanotubes (HNTs) were used as nano-adsorbents for removal of the cationic dye, Malachite Green (MG), from aqueous solutions. The adsorption of the dye was studied with batch experiments. The natural HNTs used as adsorbent in this work were initially characterized by FT-IR and TEM. The effects of adsorbent dose, initial pH, temperature, initial dye concentration and contact time were investigated. Adsorption increased with increasing adsorbent dose, initial pH, and temperature. Equilibrium was rapidly attained after 30 min of contact time. Pseudofirst-order, pseudo-second-order and intraparticle diffusion models were considered to evaluate the rate parameters. The adsorption followed pseudo-second-order kinetic model with correlation coefficients greater than 0.999. The factors controlling adsorption process were also calculated and discussed. The maximum adsorption capacity of 99.6 mg g−1 of MG was achieved in pH = 9.5. Thermodynamic parameters of Δ, Δ and ΔS° indicated the adsorption process was spontaneous and endothermic.  相似文献   

8.
In this study, a new sorbent, a poly(acrylamide‐co‐itaconic acid) [P(AAm‐co‐IA)]/activated charcoal (AC) composite, was prepared by the aqueous polymerization of acrylamide and itaconic acid in the presence of AC with N,N′‐methylene bisacrylamide as a crosslinker and potassium persulfate as an initiator. The P(AAm‐co‐IA)/AC composite sorbent showed a fair capacity to adsorb the cationic dye methylene blue. The maximum sorption capacity, as studied at 23, 37, and 50°C and determined with the Langmuir isotherm model, was found to be 909.0, 312.5, and 192.3 mg/g, respectively. For an initial concentration of 5 mg/L, the kinetic uptake data were studied with various kinetic models. The pseudo‐second‐order equation was found to fairly fit the uptake data with a regression value of 0.999. The dye uptake increased with the pH of the sorbate solution, and the optimum pH was found to be in the range of 7–10. Intraparticle diffusion was also observed to take place, and the coefficient of intraparticle diffusion was evaluated to be 26.51 × 10?2 mg g?1 min?1/2. The various thermodynamic parameters were also determined to predict the nature of the uptake process. The sorption process was found to be spontaneous, as indicated by a negative standard free energy change. The negative standard enthalpy change suggested an exothermic nature for the uptake. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Three different carbonaceous materials, activated carbon, graphene oxide, and multi-walled carbon nanotubes, were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The adsorbents were characterized by N2 adsorption/desorption isotherms, infrared spectroscopy, particle size, and zeta potential measurements. Batch adsorption experiments were carried out to study the effect of solution pH and contact time on dye adsorption properties. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Langmuir isotherm model. The remarkably strong adsorption capacity normalized by the BET surface area of graphene oxide and carbon nanotubes can be attributed to π–π electron donor acceptor interaction and electrostatic attraction.  相似文献   

10.
Halloysite nanotubes (HNTs) coatings were prepared by electrophoretic deposition (EPD) from different alcoholic suspensions using polyethyleneimine (PEI) as the dispersant. The results of conductivity, zeta potential, FTIR and thermal analysis showed that PEI is protonated in alcoholic suspensions and then adsorbed on the surface of HNTs enhancing their zeta potential and so colloidal stability. Optimum concentration of PEI decreased with molecular size of alcohol due to the more adsorption of PEI on HNTs. Kinetics of EPD was the fastest from the suspensions with the highest zeta potential. HNTs coatings exhibited high resistance against cracking during their drying due to the self-reinforcement provided by long HNTs and the presence of PEI in their composition which acts as the binder. The coating (6cm2) deposited from ethanolic suspension with 0.5?g/l of PEI (optimum suspension) removed 36% of MB from its aqueous solution (concentration: 5?mg/l and volume: 30?ml) within 2?h.  相似文献   

11.
Calcined titanate nanotubes were synthesized with hydrothermal treatment of the commercial TiO2 (Degussa P25) followed by calcination. The morphology and structures of as-prepared samples were investigated by transmission electron microscopy, X-ray diffraction and N2 adsorption/desorption. The samples exhibited a tubular structure and a high surface area of 157.9 m2/g. The adsorption of methylene blue onto calcined titanate nanotubes was studied. The adsorption kinetics was evaluated by the pseudo-first-order, pseudo-second-order and Weber's intraparticle diffusion model. The pseudo-second-order model was the best to describe the adsorption kinetics, and intraparticle diffusion was not the rate-limiting step. The equilibrium adsorption data were analyzed with three isotherm models (Langmuir model, Freundlich model and Temkin model). The best agreement was achieved by the Langmuir isotherm with correlation coefficient of 0.993, corresponding to maximum adsorption capacity of 133.33 mg/g. The adsorption mechanism was primarily attributed to chemical sorption involving the formation of methylene blue-calcined titanate nanotubes nanocomposite, associated with electrostatic attraction in the initial bulk diffusion.  相似文献   

12.
Activated carbon cloths are recent adsorbents whose adsorption properties are well known for monocomponent solutions of organics or metal ions. However, to treat wastewaters with these materials, their performance has to be determined in multicomponent solution. This work studies adsorption competition between metal ions (Cu2+, Pb2+) and organic matter (benzoic acid). The first part investigates adsorption equilibrium of monocomponent metal ions solutions and shows the dependence of adsorption capacities on adsorbent porosity and metal ions chemical properties (molecular weight, ionic radius and electronegativity). The influence of pH is also demonstrated. The second part focuses on adsorption competition: (1) between both metal ions (a decrease of adsorption capacities is observed, whose value is related to adsorption kinetics of metal ions); (2) between metal ions and organic matter, in solution or adsorbed onto the activated carbon cloth (a strong influence of pH is shown: when benzoic acid is under benzoate form, in both cases adsorption is increased due to the formation of ligands between adsorbed benzoate ions and metals).  相似文献   

13.
Bone is an inorganic template containing organic material inside which can be converted into hydroxyapatite‐rich material by pyrolysis. Nowadays, there is a growing research interest in the use of hydroxyapatite, the chemical formula of which is Ca10(PO4)6(OH)2. In the present work, pork bone, an abundant biomass source and food waste, has been converted into structured porous hydroxyapatite by a three‐step process including precharring under mild conditions, chemical activation, and thermal activation. The investigated activating agents were NaOH, KOH, K2CO3, H2SO4, and H3PO4. A thorough investigation of the influence of different activating protocols on the chemical and textural properties of the produced material was carried out by nitrogen adsorption–desorption at 77 K, potentiometric titrations, Fourier transform infrared, and X‐ray diffraction techniques. Chemical activation with NaOH, K2CO3, and H2SO4 increased the specific surface area up to 53%. H3PO4 reduced both surface area and pore volume, and KOH showed little influence on the pore structure. The produced materials were evaluated by methylene blue adsorption tests and showed significant improvement as a result of chemical activation. As a main effect, acid treatment increased methylene blue adsorption kinetics, probably owing to an increase in micropororosity, whereas alkali activation enhanced the adsorption capacity of the resultant biochar.  相似文献   

14.
Microsilica, one kind of industrial solid waste material, was utilized firstly to prepare a carbon-microsilica composite adsorbent (CMS). The prepared adsorbent was characterized with XPS, SEM and Gas sorption experiments. The results indicated the SO3H groups, which are very effective in capturing cationic organic dye, were introduced onto the surface of CMS; the Brunauer-Emmett-Teller (BET) surface area (S BET ) and total pore volume (V total ) of CMS reach 51m2/g and 0.045 cm3/g, respectively. Meanwhile, the possibility of the utilization of the adsorbent for removal of methylene blue (MB) from aqueous solution was investigated. The effect of pH, contact time and initial MB concentration for MB removal were studied. Equilibrium data were modeled using the Langmuir, Freundlich and Dubinin-Radushkevich equations to describe the equilibrium isotherms. It was found that data fit to the Langmuir equation better than the Freundlich equation. Maximum monolayer adsorption capacity was calculated at different temperatures (298, 308, and 318 K) reach 251.81, 283.76 and 309.70 mg/g, respectively. It was observed that adsorption kinetics obeys the pseudo-first-order equation.  相似文献   

15.
Mingfei Zhao 《Desalination》2009,249(1):331-203
The modified expanded graphite (MEG) powder was used as a porous adsorbent for the removal of the cationic dye, methylene blue (MB), from aqueous solutions. The dye adsorption experiments were carried out with the bath procedure. Experimental results showed that the basic pH, increasing initial dye concentration and high temperature favored the adsorption. The dye adsorption equilibrium was attained rapidly after 5 min of contact time. Experimental data related to the adsorption of MB on the MEG under different conditions were applied to the pseudo-first-order equation, the pseudo-second-order equation and the intraparticle diffusion equation, and the rate constants of first-order adsorption (k1), the rate constants of second-order adsorption (k2) and intraparticle diffusion rate constants (kint) were calculated, respectively. The experimental data fitted very well in the pseudo-second-order kinetic model. The thermodynamic parameters of activation such as Gibbs free energy, enthalpy, and entropy were also evaluated. The results indicated that the MEG powder could be employed as an efficient adsorbent for the removal of textile dyes from effluents.  相似文献   

16.
The ability of the alum-impregnated activated alumina (AIAA) for removal of fluoride from water through adsorption has been investigated in the present study. All the experiments are carried out by batch mode. The effect of various parameters viz. contact time, pH effect (pH 2–8), adsorbent dose (0.5–16 g/l), initial fluoride concentration (1–35 mg/l) has been investigated to determine the adsorption capacity of AIAA. The adsorbent dose and isotherm data are correlated to the Bradley equation. The efficacy of AIAA to remove fluoride from water is found to be 99% at pH 6.5, contact time for 3 h, dose of 8 g/l, when 20 mg/l of fluoride is present in 50 ml of water. Energy-dispersive analysis of X-ray shows that the uptake of fluoride at the AIAA/water interface is due to only surface precipitation. The desorption study reveals that this adsorbent can be regenerated following a simple base–acid rinsing procedure, however, again impregnation of the regenerated adsorbent (rinsed residue) is needed for further defluoridation process.  相似文献   

17.
Removal of acid blue 113 (AB113) and reactive black 5 (RB5) dyes from aqueous solutions by activated red mud was investigated at different reaction parameters. Activated red mud has higher removal efficiency for AB113 than that for RB5. This can be explained by a greater molecular size of RB5 than that of AB113 and by different binding affinity with the surface of the activated red mud. Equilibrium data was fitted well with Freundlich isotherm and the kinetic data followed a pseudo second-order model. Maximum adsorption capacity was 83.33 mg/g and 35.58 mg/g at pH 3 for AB113 and RB5, respectively.  相似文献   

18.
Clay minerals are low cost materials that can be structurally modified and exploited for removal of natural organic matter from freshwaters. The present study shows that vermiculites modified by ion exchange with hexadecyltrimethylammonium or intercalation with poly(hydroxy iron) cations are potential adsorbents for removal of fulvic acid, whereas the adsorption on the raw clay mineral is negligible. The efficiency of the modified vermiculite was evaluated by measuring adsorption isotherms by the batch technique using initial fulvic acid concentrations between 2.5 and 50.0 mg L− 1, with one hour of contact time. At least 94% of the fulvic acid initially present in a 20 mg L− 1 solution was sorbed onto either the intercalated poly(hydroxy iron) cations or the organically modified vermiculite. Up to an initial concentration of 5.0 mg L− 1 the adsorption is irreversible, and no quantifiable fulvic acid was measured in the desorption experiments. For initial fulvic acid concentrations between 10.0 and 50.0 mg L− 1, desorption was between 2.3% and 4.9% for Fe(III) intercalated vermiculite, and between 1.4% and 9.2% for the organoclay. The adsorption percentages on intercalated poly(hydroxy iron) cations increased upon lowering pH and increasing the ionic strength, indicating the occurrence of strong binding mechanisms such as ligand exchange. Adsorption percentage of fulvic acid onto the organoclay also increased with lowering of pH, but in this case the adsorption percentages showed a small decrease at high ionic strength, suggesting that electrostatic attraction plays an important role in the adsorption process.  相似文献   

19.
The sorption capacity of synthetic montmorillonites of the composition Na2x (Al2(1–x),Mg2x )Si4O10(OH)2 · nH2O (where 0 < x < 1) in relation to the methylene blue dye has been investigated. The obtained results from the data for natural samples of montmorillonite (K10) and activated carbon have been compared. The effect of the montmorillonite composition and the medium acidity on the degree of dye adsorption has been studied. The chemical composition of montmorillonite, which is optimal for solving tasks in the field of ecology and medicine, has been determined. The character of the interaction of montmorillonites with the adsorbed substance from the point of view of the physical-chemical sorption models has also been studied.  相似文献   

20.
In this study, removal of methylene blue (MB) from aqueous solution by poly(AMPS-co-IA) hydrogels was examined by batch equilibration technique. The effects of monomer ratio, concentration of initiator and crosslinker, pH, adsorption time, initial dye concentration and adsorption temperature on the removal of MB were studied. The results show that the removal of MB was highly effected by preparation conditions of hydrogel. The maximum removal was observed at 10/90 IA/AMPS monomer ratio, 1.0% KPS, and 10.0% MBAAm concentrations. Removal of MB was strongly affected by pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied. It was concluded that adsorption of MB on hydrogel followed pseudo-second-order kinetics. It was found that the adsorption isotherm of the MB fit Langmuir-type isotherms. From the Langmuir equation, the adsorption capacity was found as 1,000 mg/g for MB dye. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. Ten adsorption—desorption cycles demonstrated that the hydrogels were suitable for repeated use without considerable change in adsorption capacity. The results revealed that this hydrogels have potential to be used as an adsorbent for the removal of MB from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号