首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Site-directed mutagenesis has been used to examine the function of a highly conserved aromatic residue, alpha Trp43, in the light-harvesting 1 antenna of the photosynthetic bacterium Rhodobacter sphaeroides. In this antenna alpha Trp43 is thought to be located near the putative binding site for bacteriochlorophyll; in this work it was changed to both Tyr and Phe, and in each case the main near-infrared absorbance peak was shifted to the blue, from 876 nm to 865 nm and then to 853 nm, respectively. Resonance Raman spectroscopy of the resulting complexes shows a shift of one component of the 1640-cm-1 peak to 1632 cm-1 for the Tyr mutant and to 1660 cm-1 for the Phe mutant. This demonstrates a strengthening of an existing H bond for the Tyr change and a breakage of this bond for the change to Phe. The 1640-cm-1 peak has been previously assigned to H-bonded C2 acetyl carbonyl groups of both bacteriochlorophylls in the light-harvesting 1 antenna dimer [Robert, B. & Lutz, M. (1985) Biochim. Biophys. Acta 807, 10-21]. These results indicate that one of these H bonds is to alpha Trp43, placing this residue in close proximity to the bacteriochlorophyll a macrocycle with which it interacts. The existence of this bond places constraints on the conformation of the alpha polypeptide, and a model of an alpha beta heterodimer is presented incorporating these data.  相似文献   

2.
Conformational free energy calculations using an empirical potential (ECEPP/2) and the hydration shell model were carried out on the N-acetyl-N'-methylamides of Pro-Xaa dipeptides (Xaa = Ala, Leu, Val, Gly, Cys, Met, Phe, Tyr, Asn, Asp, and Ser) with trans and cis peptide bonds preceding proline residue in the unhydrated and hydrated states. As compared with the results obtained by using the earlier version of ECEPP, the values of beta-bend probabilities are doubled. The average calculated population of cis-dipeptide is about 4%, which is close to the abundance obtained from the analysis of X-ray crystal structures of proteins. The beta-bends are the most dominant structures of cis-dipeptides. Type I, usually having intramolecular hydrogen bonds, contributes greatly to the beta-bend conformations of trans- and cis-dipeptides. However, type I beta-bends of cis-dipeptides do not have any hydrogen bonds. By including the hydration, the beta-bend probabilities for trans- and cis-dipeptides decreased, indicating that the interactions of water molecules with a backbone or side-chain may force the dipeptides to be more distorted or extended. In particular, type II is found to be a dominant beta-bend conformation of trans- and cis-Pro-Gly dipeptides in both the unhydrated and hydrated states. In general, the calculated propensities for Pro-Xaa dipeptides to adopt beta-bend conformations are reasonably consistent with available experimental data. From comparing conformations of Pro and Xaa residues in the dipeptides and single residues, we found that inter-residue interactions and hydration are of importance in determining the conformational properties of the Pro-Xaa dipeptide.  相似文献   

3.
Five peptides related to the N-terminal sequence of the vasoactive intestinal peptide (VIP) have been synthesized. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments (i.e., correlated spectroscopy [COSY]) and low temperature coefficient measurements for particular NH chemical shifts suggest the presence of hydrogen bondings in both VIP (1-7, and VIP (1-11) fragments. Nuclear Over-hauser enhancement spectroscopy (NOESY) show that aromatic interactions stabilize a preferred conformation. The crucial role of the first histidine residue, which is a determinant for the biological activity, is explained by specific interactions with the aromatic protons of Phe6 and Tyr10.  相似文献   

4.
Here we have performed a statistical analysis of the protein database to find new putative local C-terminal motifs in alpha-helices. Our analysis shows that certain combinations of X-Pro pairs (Asn, Cys, His, Phe, Tyr, Trp, Ile, Val and Leu), in which residue X is the C-cap and the Pro is at position C', are more abundant than expected. In those pairs, except for the aliphatic residues, the presence of the Pro residue at C' tends to restrict the phi and psi dihedral angles of the residue at position C-cap, around -130 degrees , 70 degrees , respectively. For the aromatic residues as well as for His, the chi1 angle is around -60 degrees and the edge of the His and aromatic rings are close to the carbonyl group of the residue i - 4. In all the pairs having the above dihedral angles for residue C-cap, the main-chain amino group of Pro at C' is close to the last three main-chain carbonyls of the alpha-helix. The above structural arrangements suggests the existence of a stabilising electrostatic interaction of the residues at positions C-cap and C' with the helix macrodipole. We have denominated this putative local motif, the Pro-capping motif. To asses its importance in helix stability we have analysed by nuclear magnetic resonance (NMR) and far-UV circular dichroism (CD) a set of polyalanine-based peptides containing two of the above pairs: His-Pro and Phe-Pro, as well as the corresponding controls. In the case of the His-Pro pair we have found NMR evidence for the formation of the Pro-capping motif in aqueous solution. CD analysis shows that the presence of a Pro residue alters the C-cap properties of the preceding amino acids in the case of His and Phe makes them more favourable. The Pro-capping motif with the appropriate sequence, determines the location of the C terminus of alpha-helices and stabilises the helical conformation having Pro as the C' residue.  相似文献   

5.
A proline residue flanked by two polar residues is a highly conserved sequence motif in the Ca2+- and carbohydrate-binding site of C-type animal lectins. Crystal structures of several C-type lectins have shown that the two flanking residues are only observed to act as Ca2+ ligands when the peptide bond preceding the proline residue is in the cis conformation. In contrast, structures of the apo- and one-ion forms of mannose-binding proteins (MBPs) reveal that, when the Ca2+-binding site is empty, the peptide bond preceding the proline can adopt either the cis or trans conformation, and distinct structures in adjacent regions are associated with the two proline isomers. In this work, measurements of Ca2+-induced changes in intrinsic tryptophan fluorescence, and fluorescence energy transfer from tryptophan to Tb3+, reveal a slow conformational change in rat liver MBP (MBP-C) accompanying the binding of either Ca2+ or Tb3+. The Ca2+-induced increase in intrinsic tryptophan fluorescence shows biphasic kinetics: a burst phase with a rate constant greater than 1 s(-1) is followed by a slow phase with a single-exponential rate constant ranging from 0.01 to 0.05 s(-1) (36 degrees C) that depends on the concentration of Ca2+. Likewise, addition of EGTA to Ca2+-bound or Tb3+-bound MBP-C causes a decrease in intrinsic tryptophan fluorescence with biphasic kinetics consisting of a burst phase with a rate constant greater than 1 s(-1), followed by a slow phase with a single-exponential rate constant of 0.065 s(-1). In contrast, Tb3+ fluorescence produced by resonant energy transfer from MBP-C decreases in a single kinetic phase with a rate constant greater than 1 s(-1), implying that the slow change in tryptophan fluorescence monitors a conformational change that is not limited in rate by ion dissociation. The rate constants of the slow phases accompanying Ca2+ binding and release are strongly affected by temperature and are weakly accelerated by the prolyl isomerase cyclophilin. These data strongly suggest that the binding of either Ca2+ or Tb3+ to MBP-C is coupled to a conformational change that involves the cis-trans isomerization of a peptide bond. Fitting of the data to kinetic models indicates that, in the absence of Ca2+, the proline in approximately 80% of the molecules is in the trans conformation. The slow kinetics associated with cis-trans proline isomerization may be exploited by endocytic receptors to facilitate sorting of carbohydrate-bearing ligands from the receptor in the endosome.  相似文献   

6.
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

7.
The molecular mechanism of substrate recognition in membrane transport is not well understood. Two amino acid residues, Tyr446 and Trp455 in transmembrane segment 10 (TM10), have been shown to be important for galactose recognition by the yeast Gal2 transporter; Tyr446 was found to be essential in that its replacement by any of the other 19 amino acids abolished transport activity (Kasahara, M., Shimoda, E., and Maeda, M. (1997) J. Biol. Chem. 272, 16721-16724). The Glut1 glucose transporter of animal cells belongs to the same Glut transporter family as does Gal2 and thus might be expected to show a similar mechanism of substrate recognition. The role of the two amino acids, Phe379 and Trp388, in rat Glut1 corresponding to Tyr446 and Trp455 of Gal2 was therefore studied. Phe379 and Trp388 were individually replaced with each of the other 19 amino acids, and the mutant Glut1 transporters were expressed in yeast. The expression level of most mutants was similar to that of the wild-type Glut1, as revealed by immunoblot analysis. Glucose transport activity was assessed by reconstituting a crude membrane fraction of the yeast cells in liposomes. No significant glucose transport activity was observed with any of Trp388 mutants, whereas the Phe379 mutants showed reduced or no activity. These results indicate that the two aromatic amino acids in TM10 of Glut1 are important for glucose transport. However, unlike Gal2, the residue at the cytoplasmic end of TM10 (Trp388, corresponding to Trp455 of Gal2), rather than that in the middle of TM10 (Phe379, corresponding to Tyr446 of Gal2), is essential for transport activity.  相似文献   

8.
We have studied the role of a highly conserved tryptophan and other aromatic residues of the thyrotropin-releasing hormone (TRH) receptor (TRH-R) that are predicted by computer modeling to form a hydrophobic cluster between transmembrane helix (TM)5 and TM6. The affinity of a mutant TRH-R, in which Trp279 was substituted by alanine (W279A TRH-R), for most tested agonists was higher than that of wild-type (WT) TRH-R, whereas its affinity for inverse agonists was diminished, suggesting that W279A TRH-R is constitutively active. We found that W279A TRH-R exhibited 3.9-fold more signaling activity than WT TRH-R in the absence of agonist. This increased basal activity was inhibited by the inverse agonist midazolam, confirming that the mutant receptor is constitutively active. Computer-simulated models of the unoccupied WT TRH-R, the TRH-occupied WT TRH-R, and various TRH-R mutants predict that a hydrophobic cluster of residues, including Trp279 (TM6), Tyr282, and Phe199 (TM5), constrains the receptor in an inactive conformation. In support of this model, we found that substitution of Phe199 by alanine or of Tyr282 by alanine or phenylalanine, but not of Tyr200 (by alanine or phenylalanine), resulted in a constitutively active receptor. We propose that a hydrophobic cluster including residues in TM5 and TM6 constrains the TRH-R in an inactive conformation via interhelical interactions. Disruption of these constraints by TRH binding or by mutation leads to changes in the relative positions of TM5 and TM6 and to the formation of an active form of TRH-R.  相似文献   

9.
This study was initiated to determine whether the intestinal H+/peptide symporter PEPT1 differentiates between the peptide bond conformers of substrates. We synthesized a modified dipeptide where the peptide bond is replaced by the isosteric thioxo peptide bond. The Ala-Pro derivative Ala-psi[CS-N]-Pro exists as a mixture of cis and trans conformation in aqueous solution and is characterized by a low cis/trans isomerization rate. The compound was recognized by PEPT1 with high affinity. The Ki value of Ala-psi[CS-N]-Pro for the inhibition of the uptake of radiolabeled glycylsarcosine in Caco-2 cells was 0.30 +/- 0.02 mM, determined in solution with 96% trans conformation. In contrast, the Ki value was 0.51 +/- 0.02 mM when uptake media with 62% trans conformer were used. We conclude that only the trans conformer interacts with the transport system. From our data, a significant affinity of the cis conformer at PEPT1 cannot be derived. In a second approach, conformer-specific uptake of Ala-psi[CS-N]-Pro was studied by analyzing the intracellular content of Caco-2 cells following transport as well as the composition of the extracellular medium using capillary electrophoresis. The percentage of trans conformer that was 62% in the uptake medium increased to 92% inside the cells. This is the first direct evidence that an H+/peptide cotransport system selectively binds and transports the trans conformer of a peptide derivative.  相似文献   

10.
A series of deltorphin I analogs containing D- or L-N-methylalanine (MeAla), D- or L-proline (Pro), alpha-aminoisobutyric acid (Aib), sarcosine (Sar) or D-tert-leucine (Tle) in place of D-Ala2, or phenylalanine in place of Tyr1, was synthesized. The opioid activity profiles of these peptides were determined in mu and delta opioid receptor-representative binding assays and bioassays in vitro as well as in the rat tail flick test in vivo. In comparison with the deltorphin I parent, both the L- and the D-MeAla2-analog were slightly more potent delta agonists in the mouse vas deferens (MDV) assay, and the D-MeAla2-analog showed two-fold higher antinociceptive potency in the analgesic test. In view of the fact that deltorphin analogs with an unsubstituted L-amino acid residue in the 2-position generally lack opioid activity, the observed high delta opioid potency of [L-MeAla2]deltorphin I is postulated to be due to the demonstrated presence of a conformer with a cis Tyr1-MeAla2 peptide bond, since the cis conformer allows for a spatial arrangement of the pharmacophoric moieties in the N-terminal tripeptide segment similar to that in active deltorphin analogs containing a D-amino acid residue in the 2-position. Substitution of Aib in the 2-position led to a compound, H-Tyr-Aib-Phe-Asp-Val-Val-Gly-NH2, which displayed lower delta receptor affinity than the parent peptide but higher delta selectivity and, surprisingly, three times higher antinociceptive potency. The D- and L-Pro2-, Sar2- and D-Tle2-analogs showed much reduced delta receptor affinities and were inactive in the tail flick test. Replacement of Tyr1 in deltorphin I with Phe produced a 32-fold decrease in delta receptor affinity but only a 7-fold drop in antinociceptive potency.  相似文献   

11.
Cytochrome bo is a four-subunit quinol oxidase in the aerobic respiratory chain of Escherichia coli and functions as a redox-coupled proton pump. Subunit I binds all the redox metal centers, low-spin heme b, high-spin heme o, and CuB, whose axial ligands have been identified to be six invariant histidines. This work explored the possible roles of the aromatic amino acid residues conserved in the putative transmembrane helices (or at the boundary of the membrane) of subunit I. Sixteen aromatic amino acid residues were individually substituted by Leu, except for Tyr61 and Trp282 by Phe and Phe415 by Trp. Leu substitutions of Trp280 and Tyr288 in helix VI, Trp331 in loop VII-VIII, and Phe348 in helix VIII reduced the catalytic activity, whereas all other mutations did not affect the in vivo activity. Spectroscopic analyses of the purified mutant enzymes revealed that the defects were attributable to perturbations of the binuclear center. On the basis of these findings and recent crystallographic studies on cytochrome c oxidases, we discuss the possible roles of the conserved aromatic amino acid residues in subunit I of the heme-copper terminal oxidases.  相似文献   

12.
The trifluoroethanol (TFE)-induced formation of alpha-helical structures in the peptide hormone calcitonin (salmon) was studied using limited proteolysis combined with capillary zone electrophoresis. A low TFE content in TFE/buffer mixtures was insufficient to introduce secondary structure, but two Lys-Leu bonds were found to have become inaccessible to proteolysis with clostripain. The influence of increasing helical degree of the Thr6-Lys18 (or Thr6-Tyr22 in the trans conformation) segment on the cis/trans isomerization of the adjacent Tyr22-Pro23 peptide bond was examined by means of isomer specific proteolysis. Results indicate that the helix dipole does not influence the cis/trans equilibrium distribution of the flanking Tyr22-Pro23 bond but considerably increases its isomerization rate Ko-->t.  相似文献   

13.
The role of the membrane lipid composition and the individual Trp residues in the conformational rearrangement of gramicidin A along the folding pathway to its channel conformation has been examined in phospholipid bilayers by means of previously described size-exclusion high-performance liquid chromatography HPLC-based strategy (Ba?ó et al. (1991) Biochemistry 30, 886). It has been demonstrated that the chemical composition of the membrane influences the transition rate of the peptide rearrangement from double-stranded dimers to beta-helical monomers. The chemical modification of Trp residues, or its substitution by the more hydrophobic residues phenylalanine or naphthylalanine, stabilized the double-stranded dimer conformation in model membranes. This effect was more notable as the number of Trp-substituted residues increased (tetra > tri > di > mono), and it was also influenced by the specific position of the substituted amino acid residue in the sequence, in the order Trp-9 approximately Trp-13 > Trp-11 > Trp-15. Moreover, it was verified that nearly a full contingent of indoles (Trp-13, -11, and -9) is necessary to induce a quantitative conversion from double-stranded dimers to single-stranded monomers, although Trp-9 and Trp-13 seemed to be key residues for the stabilization of the beta-helical monomeric conformation of gramicidin A. The conformation adopted for monomeric Trp --> Phe substitution analogues in lipid vesicles resulted in CD spectra similar to the typical single-stranded beta6.3-helical conformation of gramicidin A. However, the Trp --> Phe substitution analogues showed decreased antibiotic activity as the number of Trp decreased.  相似文献   

14.
Conformations of two cyclic analogs of angiotensin (Asp1-Arg2-Val3-Tyr4-Val/Ile5-His6-Pro7-Phe8, AT), cyclo[Sar1, Cys3, Mpt5]-AT and cyclo[Sar1, HCys3, Mpt5]-AT, were studied, independently employing two complementary techniques, energy calculations and NMR measurements in DMSO solution. NMR data were indicative of well-defined solution conformations for the cyclic moieties of cyclo[Sar1, Cys3, Mpt5]-AT and cyclo[Sar1, HCys3, Mpt5]-AT, including the phi values for the Cys3/HCys3 and Tyr4 residues, as well as the chi 1 value for the Tyr4 residue. Solution conformations for the exocyclic linear parts of both molecules cannot be described by the NMR data with the same precision. At the same time, independent energy calculations revealed the same conformations of cyclic moieties of cyclo[Sar1, Cys3, Mpt5]-AT and cyclo[Sar1, HCys3, Mpt5]-AT among low-energy conformers for both peptides. Moreover, the same conformations are compatible with the model of AT receptor-bound conformation (Nikiforovich & Marshall, 1993), which assumes the particular spatial arrangement of aromatic moieties of Tyr4, His6, and Phe8 residues and the C-terminal carboxyl. These conformers of cyclo[Sar1, Cys3, Mpt5]-AT and cyclo[Sar1, HCys3, Mpt5]-AT contain "an open turn" in the backbone of the Tyr4-Val5 residues, instead of the earlier proposed beta-like reversal, thus confirming the suggestion that the conformation(s) ensuring binding of AT analogs with specific receptors should not be described in terms of a unique backbone conformer.  相似文献   

15.
Molecular modeling studies using the CHARMM method have been conducted to study the binding modes of aldose reductase inhibitors at the active site of aldose reductase. The energy minimized structures of aldose reductase with six structurally diverse inhibitors (spirofluorene-9,5'-imidazolidine-2',4'-dione (1), 9-fluoreneacetic acid (2), AL1576 (3), 2,7-difluoro-9-fluoreneacetic acid (4), FK366 (5), and Epalrestat (9)) indicate that the side chains of Tyr48, His110, and Trp111 can form numerous hydrogen bonds with either the carboxylate or the hydantoin group of the inhibitors while the side chains of Trp20, Trp111, and Phe122 are positioned to form aromatic-aromatic interactions. Of the three residues (Tyr 48, His 110, and Trp 111) that can form hydrogen bonds with the ionized portion of aldose reductase inhibitors, protonated His110 appears to play an important role in directing charged inhibitors to bind at the active site through charge interaction. Based on the binding mode of the inhibitors and their observed inhibitory activities, pharmacophore requirements for aldose reductase inhibitors are discussed.  相似文献   

16.
The parathyroid hormone (PTH)-2 receptor displays strong ligand selectivity in that it responds fully to PTH but not at all to PTH-related peptide (PTHrP). In contrast, the PTH-1 receptor (PTH/PTHrP receptor) responds fully to both ligands. Previously it was shown that two divergent residues in PTH and PTHrP account for PTH-2 receptor selectivity; position 23 (Trp in PTH and Phe in PTHrP) determines binding selectivity and position 5 (Ile in PTH and His in PTHrP) determines signaling selectivity. To identify sites in the PTH-2 receptor involved in discriminating between His5 and Ile5, we constructed PTH-2 receptor/PTH-1 receptor chimeras, expressed them in COS-7 cells, and tested for cAMP responsiveness to [Trp23] PTHrP-(1-36), and to the nondiscriminating peptide [Ile5, Trp23]PTHrP-(1-36) (the Phe23 --> Trp modification enabled high affinity binding of each ligand to the PTH-2 receptor). The chimeras revealed that the membrane-spanning/loop region of the receptor determined His5/Ile5 signaling selectivity. Subsequent analysis of smaller cassette substitutions and then individual point mutations led to the identification of two single residues that function as major determinants of residue 5 signaling selectivity. These residues, Ile244 at the extracellular end of transmembrane helix 3, and Tyr318 at the COOH-terminal portion of extracellular loop 2, are replaced by Leu and Ile in the PTH-1 receptor, respectively. The results thus indicate a functional interaction between two residues in the core region of the PTH-2 receptor and residue 5 of the ligand.  相似文献   

17.
In a non-redundant set of 571 proteins from the Brookhaven Protein Data Base, a total of 43 non-proline cis peptide bonds were identified. Average geometrical parameters of the well-defined cis peptide bonds in proteins determined at high resolution show that some parameters, most notably the bond angle at the amide bond nitrogen, deviate significantly from the corresponding one in the trans conformation. Since the same feature was observed in cis amide bonds in small molecule structures found in the Cambridge Structural Data Base, a new set of parameters for the refinement of protein structures containing non-Pro cis peptide bonds is proposed.A striking preference was observed for main-chain dihedral angles of the residues involved in cis peptide bonds. All residues N-terminal and most residues C-terminal to a non-Pro cis peptide bond (except Gly) are located in the beta-region of a phi/psi plot. Also, all of the few C-terminal residues (except Gly) located in the alpha-region of the phi/psi plot constitute the start of an alpha-helix in the respective structure. In the majority of cases, an intimate side-chain/side-chain interaction was observed between the flanking residues, often involving aromatic side-chains. Interestingly, most of the cases found occur in functionally important regions such as close to the active site of proteins. It is intriguing that many of the proteins containing non-proline cis peptide bonds are carbohydrate-binding or processing proteins. The occurrence of these unusual peptide bonds is significantly more frequent in structures determined at high resolution than in structures determined at medium and low resolution, suggesting that these bonds may be more abundant than previously thought. On the basis of our experience with the structure determination of coagulation factor XIII, we developed an algorithm for the identification of possibly overlooked cis peptide bonds that exploits the deviations of geometrical parameters from ideality. A few likely candidates based on our algorithm have been identified and are discussed.  相似文献   

18.
Manduca sexta apolipophorin-III, apoLp-III, is an exchangeable apolipoprotein of 17 kDa that contains no Trp, one Tyr, and eight Phe. The effect of pH on the kinetics of association of apoLp-III with dimyristoylphosphatidylcholine was studied. The pH dependence of the kinetics showed three distinct regions. Above pH 7, the reaction rate is slow and slightly affected by pH. A approximately 40-fold increase in the rate constant is observed when the pH is decreased from 8 to 4, and a decrease in rate is observed below pH 4. Far-UV CD spectroscopy indicated that the secondary structure of the protein is not affected when decreasing the pH from 8 to 4.5. The pH dependence of the Tyr fluorescence showed three pH regions that resemble the regions observed in the kinetics. Comparison of the far-UV CD and fluorescence studies indicated the formation of a folding intermediate between pHs 4 and 7. This intermediate was also characterized by near-UV CD and fluorescence quenching. Fluorescence quenching studies with I- and Cs+ indicated a very low exposure of the Tyr residue in both native and intermediate conformations. The pH dependence of the near-UV CD spectra indicated that the native --> intermediate transition is accompanied by a loss in the packing constrains of the Tyr residue. UV absorption spectroscopy of the Phe and Tyr residues indicated that the native --> intermediate transition is also accompanied by the hydration of the Tyr residue and approximately 4 Phe residues. This report shows, for the first time, the correlation between the increase in lipid binding activity of an exchangeable apolipoprotein and the formation of a compact but hydrated conformation near physiological conditions. These results suggest a direct correlation between the lipid binding activity and the internal hydration of the apolipoprotein. The similarity between the insect exchangeable apolipoprotein and the human counterparts, apoA-I, apoA-II, etc., and the recent demonstration of the presence of a molten globular like-state of human apoA-I near physiological conditions [Gursky, O., and Atkinson, D. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 2991-2995] suggest that this highly hydrated and compact state may play an important physiological role as the most active lipid binding state of the apolipoproteins in general.  相似文献   

19.
Interaction between angiotensin II (Ang II) and the fragment peptide 300-320 (fCT300-320) of the rat angiotensin II receptor AT1a was demonstrated by relaxation measurements, NOE effects, chemical shift variations, and CD measurements. The correlation times modulating dipolar interactions for the bound and free forms of Ang II were estimated by the ratio of the nonselective and single-selective longitudinal relaxation rates. The intermolecular NOEs observed in NOESY spectra between HN protons of 9Lys(fCT) and 6His(ang), 10Phe(fCT) and 8Phe(ang), HN proton of 3Tyr(fCT) and Halpha of 4Tyr(ang), 5Phe(fCT)Hdelta and Halpha of 4Tyr(ang) indicated that Ang II aromatic residues are directly involved in the interaction, as also verified by relaxation data. Some fCT300-320 backbone features were inferred by the CSI method and CD experiments revealing that the presence of Ang II enhances the existential probability of helical conformations in the fCT fragment. Restrained molecular dynamics using the simulated annealing protocol was performed with intermolecular NOEs as constraints, imposing an alpha-helix backbone structure to fCT300-320 fragment. In the built model, one strongly preferred interaction was found that allows intermolecular stacking between aromatic rings and forces the peptide to wrap around the 6Leu side chain of the receptor fragment.  相似文献   

20.
Conformational energy calculations using ECEPP (Empirical Conformational Energy Program for Peptides) were performed on the molecular fragment Calpha1C'ONHCalpha2, on N-methylacetamide, and on several peptide molecules including N-acetyl-N'-methylglycineamide (Gly single residue), N-acetyl-N',N'-dimethylglycine-amide, and N-acetyl-N'-methylamide dipeptides of Gly-Gly and Gly-Pro. Energy minimization was carried out with peptide groups taken in both the cis and trans conformations, and the librational entropy and conformational free energy were determined at each minimum. It was found that the instability of cis in Gly-Gly comes primarily from interactions of the Calpha1 and HCalpha1 atoms with the Calpha2 and HCalpha2 atoms, and also from avorable interactions present in the trans form which are disallowed in the cis form, and from conformational entropy. The instability of cis in Gly-Pro is much less than in Gly-Gly because unfavorable interactions of the type CalphaH-CalphaH present in the cis conformation of Gly-Gly are present in both the cis and trans forms of Gly-Pro. The instability of cis in Gly-Pro arises mainly from the change in electrostatic energy caused by the restricted rotation about the N-Calpha bond of Pro. Entropy accounts for about 0.5 kcal/mol of the instability of cis in Gly-Pro compared with about 1.5 kcal/mol in Gly-Gly. The calculated fraction (4%) of cis in Gly-pro is in good agreement with the experimental value (5%) for related peptides in nonpolar solvents. When the dihedral angle omega of the central peptide bond in these dipeptides is allowed to vary during energy minimization, the deviations from planarity are only 1-3 degrees in low-energy minima of Gly-Gly but as much as 10 degrees in Gly-Pro. A comparison of these results with calculations in which the peptide bond was held fixed in the planar trans conformation shows that conformation-dependent properties of blocked dipeptides can be represented adequately without allowing omega to vary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号