首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Chlorophyll fluorescence measurements were performed on osmotically lysed potato chloroplasts in order to characterize the reactions involved in the dark reduction of photosynthetic inter-system chain electron carriers. Addition of NADH or NADPH to lysed chloroplasts increased the chlorophyll fluorescence level measured in the presence of a non-actinic light until reaching Fmax, thus indicating an increase in the redox state of the plastoquinone (PQ) pool. The fluorescence increase was more pronounced when the experiment was carried out under anaerobic conditions and was about 50% higher when NADH rather than NADPH was used as an electron donor. The NAD(P)H-PQ oxidoreductase reaction was inhibited by diphenylene iodonium, N-ethylmaleimide and dicoumarol, but insensitive to rotenone, antimycin A and piericidin A. By comparing the substrate specificity and the inhibitor sensitivity of this reaction to the properties of spinach ferredoxin-NADP+-reductase (FNR), we infer that FNR is not involved in the NAD(P)H-PQ oxidoreductase activity and conclude to the participation of rotenone-insensitive NAD(P)H-PQ oxidoreductase. By measuring light-dependent oxygen uptake in the presence of DCMU, methyl viologen and NADH or NADPH as an electron donors, the electron flow rate through the NAD(P)H-PQ oxidoreductase is estimated to about 160 nmol O2 min-1 mg-1 chlorophyll. The nature of this enzyme is discussed in relation to the existence of a thylakoidal NADH dehydrogenase complex encoded by plastidial ndh genes. Copyright 1998 Elsevier Science B.V.  相似文献   

2.
Hydrogenase from the marine green alga, Chlorococcum littorale, was purified 1485-fold, resulting in a specific activity for hydrogen evolution of 75.7 micromol/min/mg of protein at 25 degrees C, using reduced methyl viologen as an electron donor. The K(m) value for methyl viologen was 0.5 mM. The purity of the enzyme was judged by native PAGE. The molecular weight was estimated to be 55 kDa by SDS-PAGE, and 57 kDa by gel filtration. The optimum temperature and pH value for hydrogen evolution were 50 degrees C and 7.5, respectively. The partially purified hydrogenase catalyzed hydrogen evolution from ferredoxin that had been isolated from the same cells, but not from NADH or NADPH. The K(m) value for ferredoxin was 0.68 microM. The enzyme was extremely oxygen sensitive, losing over 95% of its activity upon exposure to air within minutes, even at 4 degrees C. Two peptide fragments were obtained from the hydrogenase protein digested enzymatically, and their amino acid sequences were determined. No significant homology was found to any other known sequences of hydrogenases.  相似文献   

3.
Cell-free extracts of Methanobacterium thermoautotrophicum were found to contain high activities of the following oxidoreductases (at 60 degrees C): pyruvate dehydrogenase (coenzyme A acetylating), 275 nmol/min per mg of protein; alpha-ketoglutarate dehydrogenase (coenzyme A acylating), 100 nmol/min per mg; fumarate reductase, 360 nmol/min per mg; malate dehydrogenase, 240 nmol/min per mg; and glyceraldehyde-3-phosphate dehydrogenase, 100 nmol/min per mg. The kinetic properties (apparent V(max) and K(M) values), pH optimum, temperature dependence of the rate, and specificity for electron acceptors/donors of the different oxidoreductases were examined. Pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase were shown to be two separate enzymes specific for factor 420 rather than for nicotinamide adenine dinucleotide (NAD), NADP, or ferredoxin as the electron acceptor. Both activities catalyzed the reduction of methyl viologen with the respective alpha-ketoacid and a coenzyme A-dependent exchange between the carboxyl group of the alpha-ketoacid and CO(2). The data indicate that the two enzymes are similar to pyruvate synthase and alpha-ketoglutarate synthase, respectively. Fumarate reductase was found in the soluble cell fraction. This enzyme activity coupled with reduced benzyl viologen as the electron donor, but reduced factor 420, NADH, or NADPH was not effective. The cells did not contain menaquinone, thus excluding this compound as the physiological electron donor for fumarate reduction. NAD was the preferred coenzyme for malate dehydrogenase, whereas NADP was preferred for glyceraldehyde-3-phosphate dehydrogenase. The organism also possessed a factor 420-dependent hydrogenase and a factor 420-linked NADP reductase. The involvement of the described oxidoreductases in cell carbon synthesis is discussed.  相似文献   

4.
Salt damage to plants has been attributed to a combination of several factors including mainly osmotic stress and the accumulation of toxic ions. Recent findings in our laboratory showed that phospholipid hydroperoxide glutathione peroxidase (PHGPX), an enzyme active in the cellular antioxidant system, was induced by salt in citrus cells and mainly in roots of plants. Following this observation we studied the two most important enzymes active in elimination of reactive oxygen species, namely, superoxide dismutase (SOD) and ascorbate peroxidase (APX), to determine whether a general oxidative stress is induced by salt. While Cu/Zn-SOD activity and cytosolic APX protein level were similarly induced by salt and methyl viologen, the response of PHGPX and other APX isozymes was either specific to salt or methyl viologen, respectively. Unlike PHGPX, cytosolic APX and Cu/Zn-SOD were not induced by exogenously added abscisic acid. Salt induced a significant increase in SOD activity which was not matched by the subsequent enzyme APX. We suggest that the excess of H2O2 interacts with lipids to form hydroperoxides which in turn induce and are removed by PHGPX. Ascorbate peroxidase seems to be a key enzyme in determining salt tolerance in citrus as its constitutive activity in salt-sensitive callus is far below the activity observed in salt-tolerant callus, while the activities of other enzymes involved in the defence against oxidative stress, namely SOD, glutathione reductase and PHGPX, are essentially similar.  相似文献   

5.
Activated sludge sequencing batch reactors were used to study BTX biodegradation under anoxic (denitrifying), microaerobic, and aerobic conditions. Toluene and m-xylene were biodegraded under denitrifying conditions, and the loss of these compounds correlated with the activity of reducing enzymes that were capable of oxidizing methyl viologen. Although benzene, p-, and o-xylene were recalcitrant under anoxic treatment, all three were biodegraded under microaerobic [<0.2 mg∕L dissolved oxygen (DO)] and nitrate or nitrite (NOx)-supplemented microaerobic conditions. Methyl viologen oxidation potential decreased under all microaerobic conditions while catechol 1,2-dioxygenase (C12O) and catechol 2,3-dioxygenase (C23O) were induced, indicating that the aromatic hydrocarbons were metabolized by aerobic pathways, even in the presence of NOx and in the absence of measurable DO. The degree of C12O and C23O expression under microaerobic conditions was comparable to levels found under aerobic (DO > 4 mg∕L) conditions. Benzene, p-, and o-xylene were biodegraded twice as fast under NOx-supplemented compared to NOx-free microaerobic conditions, and specific biodegradation rates under aerobic and NOx-supplemented microaerobic conditions were comparable. Oxidation reduction potential successfully differentiated between the various electron acceptor conditions and proved to be a sensitive indicator.  相似文献   

6.
The doped ZnO nanorods as a photocatalyst with different Eu contents were prepared by microwave assisted method and they were characterized by means of X-ray diffraction(XRD),energy-dispersive X-ray spectroscopy(EDS),UV-Vis spectroscopy,surface area Brunauer-Emmett-Teller(BET),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The average crystallite size and band gap energy of Eu-doped ZnO were varied with the Eu content.The XRD pattern of Eu-doped ZnO indicated hexagonal crystal structure with an average crystallite size of 25 nm.The presence of europium with trivalent state and its doping successfully into the crystal lattice of ZnO matrix were confirmed by XPS technique.The photocatalytic activity of Eu-doped ZnO nanorods was evaluated for methyl orange degradation.The photocatalytic experiments showed ~91% degradation of methyl orange over 0.2 mol.% Eu doped ZnO sample within 3 h under UV light(365 nm).  相似文献   

7.
Anoxic metabolism of many aromatic compounds proceeds via the common intermediate benzoyl-CoA. Benzoyl-CoA is dearomatized by benzoyl-CoA reductase (dearomatizing) in a two-electron reduction step, possibly yielding cyclohex-1,5-diene-1-carboxyl-CoA. This process has to overcome a high activation energy and is considered a biological Birch reduction. The central, aromatic-ring-reducing enzyme was investigated for the first time in the denitrifying bacterium Thauera aromatica strain K172. A spectrophotometric assay was developed which was strictly dependent on MgATP, both with cell extract and with purified enzyme. The oxygen-sensitive new enzyme was purified 35-fold with 20% yield under anaerobic conditions in the presence of 0.25 mM dithionite. It had a native molecular mass of approximately 170 kDa and consisted of four subunits a,b,c,d of 48, 45, 38 and 32 kDa. The oligomer composition of the protein most likely is abcd. The ultraviolet/visible spectrum of the protein as isolated, but without dithionite, was characteristic for an iron-sulfur protein with an absorption maximum at 279 nm and a broad shoulder at 390 nm. The estimated molar absorption coefficient at 390 nm was 35,000 M-1 cm-1. Reduction of the enzyme by dithionite resulted in a decrease of absorbance at 390 nm, and the colour turned from greenish-brown to red-brown. The enzyme contained 10.8 +/- 1.5 mol Fe and 10.5 +/- 1.5 mol acid-labile sulfur/mol. Besides zinc (0.5 mol/mol protein) no other metals nor selenium could be detected in significant amounts. The enzyme preparation contained a flavin or flavin-like compound; the estimated content was 0.3 mol/mol enzyme. The enzyme reaction required MgATP and a strong reductant such as Ti(III). The reaction catalyzed is: benzoyl-CoA + 2 Ti(III) + n ATP-->non-aromatic acyl-CoA + 2 Ti(IV) + n ADP + n Pi. The estimated number n of ATP molecules hydrolyzed/two electrons transferred in benzoyl-CoA reduction is 2-4. In the absence of benzoyl-CoA the enzyme exhibited oxygen-sensitive ATPase activity. The enzyme was specific for Mg(2+)-ATP, other nucleoside triphosphates being inactive (< 1%). Mg2+ could be substituted to some extent by Mn2+, Fe2+ and less efficiently by Co2+. Benzoate was not reduced, whereas some fluoro, hydroxy, amino and methyl analogues of the activated benzoic acid were reduced, albeit at much lower rate; the products remain to be identified. The specific activity with reduced methyl viologen as the electron donor was 0.55 mumol min-1 mg-1 corresponding to a catalytic number of 1.6 s-1. The apparent Km values under the assay conditions (0.5 mM for both reduced and oxidized methyl viologen) of benzoyl-CoA and ATP were 15 microM and 0.6 mM, respectively. The enzyme was inactivated by ethylene, bipyridyl and, in higher concentrations, by acetylene. Benzoyl-CoA reductase also catalyzed the ATP-dependent two-electron reduction of hydroxylamine (Km 0.15 mM) and azide. Some of the properties of the enzyme are reminiscent of those of nitrogenase which similarly overcomes the high activation energy for dinitrogen reduction by coupling electron transfer to the hydrolysis of ATP.  相似文献   

8.
Action spectra were measured for positive changes in variable fluorescence (emission greater than 665 nm) excited by a beam of 485 nm chopped at 75 HZ. The action of two further beams were compared, one being variable, the other (reference) constant with respect to wavelength and intensity. Comparison was achieved by alternating the reference and the variable wavelength beams at 0.3 HZ and adjusting the intensity of the latter such as to cancel out any 0.3 HZ component in the 75 HZ fluorescence signal. The relative action then was obtained as the reciprocal of the intensity of the variable wavelength beam. Similarly, action spectra were measured for O2 evolution with ferricyanide/p-phenylenediamine as electron acceptor, and for O2 uptake mediated by methyl viologen with ascorbate 3-(p-chlorophenyl)-1,1-dimethylurea as electron donor in the presence of 2,6-dichlorophenolindophenol. Addition of 5 mM MgCl2 increases the relative action around 480 nm for the change in variable fluorescence and p-phenylenediamine-dependent O2 evolution, and decreases it for methyl viologen-mediated O2 uptake with 2,6-dichlorophenolindo-phenol/ascorbate as electron donor in the presence of 3-(p-chlorophenyl)-1,1-dimethylurea. The change in variable fluorescence and O2 evolution are stimulated by MgCl2, whereas O2 uptake is inhibited by it. The results are discussed in terms of a model assuming a tripartite organization of the photosynthetic pigments (Thornber, J. P. and Highkin, H. R. (1974) Eur. J. Biochem. 41, 109-116; Butler, W. L. and Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72-85). MgCl2 is thought to promote energy transfer to Photosystem II from a light-harvesting pigment complex serving both photosystems.  相似文献   

9.
Fullerence (C60) efficiently generates singlet oxygen when irradiated with light, and thus should have a photodynamic effect on tumors, if it is accumulated in the tumor tissue. To explore tumor targeting of C60, we chemically modified the water-insoluble C60 with polyethylene glycol (PEG), not only to make it soluble in water, but also to enlarge its molecular size. When injected intravenously into mice carrying a tumor mass in the back subcutis, the C60-PEG conjugate exhibited higher accumulation and more prolonged retention in the tumor tissue than in normal tissue. The conjugate was excreted without being accumulated in any specific organ. Following intravenous injection of C60-PEG conjugate or Photofrin to tumor-bearing mice, coupled with exposure of the tumor site to visible light, the volume increase of the tumor mass was suppressed and the C60 conjugate exhibited a stronger suppressive effect than Photofrin. Histological examination revealed that conjugate injection plus light irradiation strongly induced tumor necrosis without any damage to the overlying normal skin. The antitumor effect of the conjugate increased with increasing irradiation power and C60 dose, and cures were achieved by treatment with a dose of 424 micrograms/kg at an irradiation power of 107 J/cm2. These findings indicate that PEG-modified C60 is a candidate agent for photodynamic tumor therapy.  相似文献   

10.
A sulfate-reducing bacterium using trinitrotoluene (TNT) as the sole nitrogen source was isolated with pyruvate and sulfate as the energy sources. The organism was able to reduce TNT to triaminotoluene (TAT) in growing cultures and cell suspensions and to further transform TAT to still unknown products. Pyruvate, H2, or carbon monoxide served as the electron donors for the reduction of TNT. The limiting step in TNT conversion to TAT was the reduction of 2,4-diamino-6-nitrotoluene (2,4-DANT) to triaminotoluene. The reduction proceeded via 2,4-diamino-6-hydroxylaminotoluene (DAHAT) as an intermediate. The intermediary formation of DAHAT was only observed in the presence of carbon monoxide or hydroxylamine, respectively. The reduction of DAHAT to triaminotoluene was inhibited by both CO and NH2OH. The inhibitors as well as DANT and DAHAT significantly inhibited sulfide formation from sulfite. The data were taken as evidence for the involvement of dissimilatory sulfite reductase in the reduction of DANT and/or DAHAT to triaminotoluene. Hydrogenase purified from Clostridium pasteurianum and carbon monoxide dehydrogenase partially purified from Clostridium thermoaceticum also catalyzed the reduction of DANT in the presence of methyl viologen or ferredoxin, however, as the main reduction product DAHAT rather than triaminotoluene was formed. The findings could explain the function of CO as an electron donor for the DANT reduction (to DAHAT) and the concomitant inhibitory effect of CO on triaminotoluene formation (from DAHAT) by the inhibition of sulfite reductase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have studied the occurrence and organization of photosystem II (PSII) in bundle sheath thylakoids and stroma lamellae from maize. As shown by non-denaturing lauryl beta-D- iminopropionidate (Deriphat)/PAGE, PSII exists in a dimeric form in grana membranes. In bundle sheath and stroma lamellae, however, only a monomeric form was found. Based on immunotitration data, we estimated the stoichiometry of the individual components of the PSII core complex and antenna systems. In stroma lamellae, all PSII antenna complexes had a stoichiometry similar to that in grana membranes, with the exception of light-harvesting complex II (LHCII) that was somewhat over-represented, while the minor antenna complexes CP26 and CP29 were under-represented. In bundle sheath, the amount of LHCII was approximately eight times higher than expected with respect to D1. The 33-kDa protein of the oxygen-evolving enhancer polypeptides was not detectable nor was the ferredoxin-NADP+ reductase, thus strongly suggesting that no significant linear electron transport occurs in bundle sheath thylakoids. Fluorescence induction data suggest that most of the PSII reaction centers in bundle sheath and stroma lamellae sustain electron transport towards a secondary acceptor pool. Stromal PSII centers are only weakly inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), whereas, unexpectedly, dichlorobenzoquinone and methyl viologen had a pronounced inhibitory effect of the QA- reoxidation. An additional specificity of these centers is the slow rate (50-ms range) of the QA to QB electron transfer. The amplitude of variable fluorescence found in stroma lamellae can only account for a small fraction (1-2%) of the variable fluorescence of whole thylakoids. This suggests that stromal PSII cannot be solely responsible for the slow beta-phase of the induction kinetics.  相似文献   

12.
13.
A soluble alpha beta complex of nitrate reductase can be obtained from a strain of Escherichia coli that lacks the narI gene and expresses only the alpha and beta subunits. The beta subunit contains four Fe-S centres and the alpha subunit contains the molybdenum cofactor, which is the site at which nitrate is reduced. Despite the lack of the gamma subunit of the complete enzyme, this complex can still catalyse the reduction of nitrate with artificial electron donors such as benzyl viologen, so that it is suitable for studying the transfer of electrons between these two types of redox centre. To examine whether the electrons from reduced benzyl viologen are initially delivered to the Fe-S centres, or directly to the molybdenum cofactor, or both, we have studied the steady-state kinetics and the binding of benzyl viologen to the alpha beta complex and mutants alpha beta* with altered beta subunits. Reduction of the enzyme by reduced benzyl viologen in the absence of nitrate showed that all four Fe-S centres and the molybdenum cofactor could be reduced. Two classes of site with different equilibrium constants could be distinguished. The kinetic results suggest that benzyl viologen supplies its electrons directly to the molybdenum cofactor, at a rate showing a hyperbolic dependence on the square of the concentration of the electron donor. A reaction mechanism is proposed for the reduction of nitrate catalysed by the alpha beta complex of nitrate reductase with artificial electron donors.  相似文献   

14.
采用溶胶-凝胶法制备银掺杂二氧化钛光催化剂,通过XRD、SEM、FT-IR、TG-DSC 和UV-Vis等技术对其进行表征.以甲基橙为模拟污染物,考察催化剂的光催化活性,探讨煅烧温度和银掺杂量对光催化效率的影响.实验结果表明:银掺杂二氧化钛提高了二氧化钛在紫外光和可见光下的光催化活性;当Ag掺杂量为1.00%、煅烧温度为450℃、催化剂用量为0.05 g时,银掺杂二氧化钛光催化剂在可见光条件下降解4 h 后,降解率达到92.57%,是纯二氧化钛的4.51倍;紫外光条件下降解2 h达到84.54%,是纯二氧化钛的2.27倍.  相似文献   

15.
The nearest neighbourhood of pigment-protein complexes within Photosystem II (PSII) membrane fragments has been studied by means of chemical cross-linking with o-phthalaldehyde (OPA) in conjunction with protein-chemical techniques. By means of OPA-induced cross-linking a major conjugate of about 60 kDa has been identified. This conjugate was shown to consist of two pigment-protein complexes of light-harvesting complex II (LHC II), Lhc b1 (CP27) and Lhc b4 (CP29) by means of SDS/PAGE in combination with an immunological analysis using mAbs directed against Lhc b4 and by matrix-assisted-laser-desorption-ionization mass spectrometry (MALDI-MS) and sequence analysis of peptides derived from a proteolytic digest of the conjugate. Domains of Lhc bl and Lhc b4 have been localized to a distance of not more than 5 A within LHC II. Our results are discussed in the light of recent models on the topography of the two subunits within the antenna system of Photosystem II.  相似文献   

16.
This study explores a new approach for antimicrobial therapy with light activation of targeted poly-L-lysine (pL)-chlorin e6 (ce6) conjugates. The goal was to test the hypothesis that these conjugates between pL and ce6 would efficiently target photodestruction towards gram-positive (Actinomyces viscosus) and gram-negative (Porphyromonas gingivalis) oral species while sparing an oral epithelial cell line (HCPC-1). Conjugates of ce6 with pL (average molecular weight, 2,000) having a positive, neutral, or negative charge were prepared. Illumination with red light (lambdamax = 671 nm) from a diode array produced a dose-dependent loss of CFU from the bacteria, under conditions that did not affect the viability of the epithelial cells. For P. gingivalis, the cationic conjugate produced 99% killing, while the neutral conjugate killed 91% and the anionic conjugate killed 76% after 1 min of incubation and exposure to red light for 10 min. For A. viscosus, the cationic conjugate produced >99.99% killing while HCPC-1 cells remained intact. The importance of the positive charge was shown by the effectiveness of ce6-monoethylenediamine monoamide (a monocationic derivative of ce6) in killing both bacteria. The clinically employed benzoporphyrin derivative under the same conditions killed epithelial cells while leaving P. gingivalis relatively unharmed. A mixture of ce6 with pL did not show phototoxicity comparable with that of the cationic conjugate. These results were explained by the selective uptake of the conjugates by bacteria (20- to 100-fold) compared to that by mammalian cells, while free ce6 showed much less selectivity for bacteria (5- to 20-fold). The data suggest that the cationic pL-ce6 conjugate may have an application for the photodynamic therapy of periodontal disease.  相似文献   

17.
18.
Ferredoxin-NADP+ reductases (FNR) participate in cellular defense against oxidative damage. Escherichia coli mutants deficient in FNR are abnormally sensitive to methyl viologen and hydrogen peroxide. Tolerance to these oxidants was regained by expression of plant FNR, superoxide dismutase, or catalase genes in the mutant cells. FNR contribution to the concerted defense against viologen toxicity under redox-cycling conditions was similar to that of the two major E. coli superoxide dismutases together, as judged by the phenotypes displayed by relevant mutant strains. However, FNR expression in sodA sodB strains failed to increase their tolerance to viologens, indicating that the FNR target is not the superoxide radical. Sensitivity of FNR-deficient cells to oxidants is related to extensive DNA damage. Incubation of the mutant bacteria with iron chelators or hydroxyl radical scavengers provided significant protection against viologens or peroxide, suggesting that oxidative injury in FNR-deficient cells was mediated by intracellular iron through the formation of hydroxyl radicals in situ. The NADP(H)-dependent activities of the reductase were necessary and sufficient for detoxification, without participation of either ferredoxin or flavodoxin in the process. Possible mechanisms by which FNR may exert its protective role are discussed.  相似文献   

19.
Using an affinity purified sheep anti-human luteinizing hormone IgG-horseradish peroxidase conjugate (sheep anti-hLH IgG-HRP) and rabbit anti-human luteinizing hormone antiserum (rabbit anti-hLH) directed against different antigenic determinants, a solid-phase "sandwich" enzyme immunometric assay (EIMA) for human luteinizing hormone (hLH) was developed. The assay was validated and compared with a liquid phase "two site" immunoradiometric assay (IRMA) for hLH which uses same two antibodies. The sheep anti-hLH IgG, which had been affinity purified by eluting at pH 3.5 from a hLH-sepharose 4 B column, was labelled with 125I. The IRMA is based on simultaneous addition of two antibodies to standards and samples. After overnight incubation, separation was achieved by addition of Sheep anti-Rabbit Fc (SARFc) antiserum. In EIMA; partially denaturated (at pH 2.5) Sheep anti-Rabbit FcIgG (SARFcIgG) coated polystyrene tubes or microtitre plates were employed as solid-phase second antibody. The substrate was N,N'-o-phenylene diamine (2 mg/ml) and H2O2 (O.02%). Two methods, modified NaIO4 and 4-(N-maleimido methyl)-cyclohexane-1-carboxylic acid N-hydroxy succinimide ester (SMCC), were employed in the preparation of sheep anti-hLH IgG-HRP conjugate. The immunoreactivity and peroxidase activity of conjugate prepared with NaIO4 method was impared to various extends. Both EIMA and IRMA had good specificity, were not susceptible to interference from serum components and exhibited very low non-specific binding. The values determined by EIMA were independent of the serum volume employed. Standard added to serum samples was accurately determined and the results obtained from the analysis of serum samples correlated closely with those obtained by IRMA.  相似文献   

20.
The physical and pharmacological properties of proteins can be altered by chemical modification with polymers. Preliminary studies showed that attachment of oxidized dextran to the bacterial protein, beta-lactamase (beta L) effectively reduced in vivo immunogenicity in mice with no loss of enzymatic activity. This report describes a general method for differentially dextran modifying the Fab' component of a Fab'--beta-lactamase conjugate by the use of amine-blocking reagents. Methyl acetimidate (MeAcm) and the N-succinimidyl derivative of (methylsulfonyl)ethyl carbonate (NHS-Msc), reagents which can reversibly block primary amines, were used in model studies to modulate the level of available reactive amines on the F(ab')2 fragments of both the anti-carcinoembryonic antigen antibody, ZCE025, and the antitumor-associated glycoprotein-72 antibody, CC49. MeAcm had little or no effect on immunoreactivity and was maximally effective in modulating dextran attachment, while NHS-Msc was much less effective. A comparison of NHS-Msc and MeAcm is described. Treatment of F(ab')2 with 5-300 mM MeAcm prior to dextran treatment showed a proportional decline in the level of dextran attachment as well as intramolecular cross-linking of the protein by the dextran polymers (6 kDa or 33-mer). A conjugate of beta L coupled to MeAcm-treated ZCE025 Fab' [reduced F(ab')2] was constructed under standard conditions using sulfosuccinimidyl N-[(4-carboxycyclohexyl)methyl]maleimide. After dextran modification, this conjugate maintained good immunoreactivity and enzymatic activity. Biodistribution studies in tumor-bearing nude mice of dextranated and nondextranated conjugate showed comparable overall distribution profiles except that the clearance of the dextranated conjugate from both blood and tumor was delayed about 48-72 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号