首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the dose equivalent due to photoneutrons and the neutron spectra in tissue was calculated for various linacs (Varian Clinac 2100C, Elekta Inor, Elekta SL25 and Siemens Mevatron KDS) operating at energies between 15 and 20 MV, using the Monte Carlo code MCNPX (v. 2.5). The dose equivalent in an ICRU tissue phantom has been calculated for anteroposterior treatments with a detailed simulation of the geometry of the linac head and the coupled electron-photon-neutron transport. Neutron spectra at the phantom entrance and at 1-cm depth in the phantom, depth distribution of the neutron fluence in the beam axis and dose distributions outside the beam axis at various depths have also been calculated and compared with previously published results. The differences between the neutron production of the various linacs considered has been analysed. Varian linacs show a larger neutron production than the Elekta and Siemens linacs at the same operating energy. The dose equivalent due to neutrons produced by medical linacs operating at energies >15 MeV is relevant and should not be neglected because of the additional doses that patients can receive.  相似文献   

2.
The doses and spectra of photoneutrons produced in a medical linear accelerator with photon energies of 10 and 15 MV were evaluated. The Monte Carlo code, MCNPX, was used to simulate the transport of these photoneutrons around the head for 10 and 15 MV photons. The fully-described geometry of the accelerator head was used in this calculation. The photoneutron energy spectra and doses for various photon field sizes were calculated at each of 20 positions. The results indicate that the maximum dose equivalents are observed in 20 x 20 cm(2) case among photon fields. It was found the neutron average energy at isocenter for a 0 x 0 cm(2) field is 0.38 MeV for 10 MV and is 0.45 MeV for 15 MV. The neutron doses at 10 positions around the head in the treatment room of the operation facility at 10 and 15 MV were measured using the bubble detectors. Measurements were compared with the calculations under the same geometry in the experiment. It was found that the majority of the calculated results agreed to within the standard deviations of the measurements. These above results can be applied in the verification of maximum allowed neutron leakage percentage of treatment dose defined in the IEC. We have been employing them to derive the empirical formula for neutron dose equivalent level at the maze entrance of medical accelerator treatment rooms in a study that is still underway.  相似文献   

3.
In Brazil, the replacement of rather old cobalt and cesium teletherapy machines with high-energy (E > 10 MV) medical linear accelerators (linacs) started in the year 2000, as part of an effort by the Ministry of Health to update radiotherapy installations. Since then, the contamination of undesirable neutrons in the therapeutic beam generated by these high-energy photons has become an issue of concern when considering patient and occupational doses. The walls of the treatment room are shielded to attenuate the primary and secondary X-ray fluence, and this shielding is generally considered adequate also to attenuate neutrons. However, these neutrons are scattered through the treatment room maze and might result in a radiological problem at the door entrance, an area of high occupancy by the workers of a radiotherapy facility. This paper presents and discusses the results of ambient dose equivalent measurements of neutron using bubble detectors. The measurements were made at different points inside the treatment rooms, including the isocentre and the maze. Several radiation oncology centres, which are users of Varian Clinac or Siemens machines, have agreed to allow measurements to be taken at their facilities. The measured values were compared with the results obtained through the semi-empirical Kersey method of neutron dose equivalent calculation at maze entrances, with reported values provided by the manufacturers as well as values published in the literature. It was found that the measured values were below the dose limits adopted by the Brazilian Regulatory Agency (CNEN), requiring no additional shielding in any of the points measured.  相似文献   

4.
This paper presents the characteristics of two high-sensitive LiF:Mg,Cu,P thermoluminescence detectors (TLDs) named MCP-600D and MCP-700D [thermoluminescence detector (TLD) Poland]. Furthermore, the applicability of both detectors used as a paired system for photoneutron detection in a high-energy photon field at a linear accelerator is shown. For MCP-600D and MCP-700D, the batch homogeneity is within 22 and 14%, respectively (2 SD). Correction for the individual response of each TLD leads to a reproducibility of 5 and 4%, respectively Both TLD types reveal a linear detector response to dose up to 4 Gy. The energy dependence for both is within 2% for 4 and 6 MV photons. For a 15 MV photon beam, the MCP-600D shows a higher response (10%); compared with the MCP-700D (2%). The MCP-600D is capable of detecting extra doses due to photoneutrons in a 15 MV photon exposure; however, the signal for an open field of the used linear accelerator is in the order of the reproducibility. Using a kind of albedo technique allows detection of photoneutrons in the open photon field anyhow. The neutron detection limit is 10 microGy neutron dose per 1 Gy photon dose. Reproducibility of the TLDs, however, requires more than 10 detectors to determine results with an uncertainty of <5%.  相似文献   

5.
During X-ray therapeutic irradiation with energies above the threshold of (X,n) reactions in the structural materials of medical accelerators, a photoneutron fluence is generated. In Brazil, no measurements of neutron doses in radiotherapy rooms are being done yet, when licensing these equipment. Consequently, it is very important to obtain accurate analytical formulae and/or simulation of these dose rates, in order to estimate the increase in dose received by the patient and staff, as well as to correctly project the additional shielding for the treatment room. In this work, we present MCNP simulation of dosimetric quantities at the isocentre of some models of high-energy linear accelerators, and compare it with the values given by the manufacturers, finding good agreement between both.  相似文献   

6.
In this work, the energy spectra of photoneutrons, scattered by ordinary, high-density concrete and wood barriers, have been evaluated using the MCNP4B code. These spectra were calculated for different scattering angles, and for incident neutron energies varying between 0.1 and 10 MeV. The results presented are required to simulate typical photoneutron fluence, produced by medical accelerators, which is scattered by the room walls and reaches the door. It was found that the mean energy of the scattered neutrons does not depend on the scattering angle. Furthermore, it was found that the scattered neutron energies are lower in wood and baryte concrete, which indicates that these materials can be used for lining the maze walls in order to reduce neutron dose at the room door. These data will help to estimate the personal dose received by the patient and staff in radiotherapy facilities.  相似文献   

7.
This paper describes the measurements of photon spectra in mixed neutron/photon radiation fields at a few locations in a nuclear reactor. The measurements were performed inside the containment of reactor 4 at the Swedish reactor site Ringhals, with a Ge-detector (4%). The measurements were carried out as a part of a EURADOS project in co-operation with the Swedish authorities and the reactor operating company. The measurements showed that a large fraction of the photons are high-energy photons (up to 7.6 MeV). This implies that GM-based photon detectors will overread in these fields since this type of detector generally overestimates the ambient dose equivalent in 6–7 MeV photon fields. The measurements also indicated that the photon field was almost isotropic, which in turn implies that the effective dose as well as the personal dose equivalent will be lower than the ambient dose equivalent.  相似文献   

8.
The 4.4 MeV photon reference field described in ISO 4037 is produced by the (12)C(p,p')(12)C (E(x) = 4.4389 MeV) reaction using a thick elemental carbon target and a proton beam with an energy of 5.7 MeV. The relative abundance of the isotope (13)C in elemental carbon is 1.10%. Therefore, the 4.4 MeV photon field is contaminated by neutrons produced by the (13)C(p,n) (13)N reaction (Q = -3.003 MeV). The ambient dose equivalent H*(10) produced by these neutrons is of the same order of magnitude as the ambient dose equivalent produced by the 4.4 MeV photons. For the calibration of dosemeters, especially those also sensitive to neutrons, the spectral fluence distribution of these neutrons has to be known in detail. On the other hand, a mixed photon/neutron field is very useful for the calibration of tissue-equivalent proportional counters (TEPC), if this field combines a high-linear energy transfer (LET) component produced by low-energy neutrons and a low-LET component resulting from photons with about the same ambient dose equivalent and energies up to 7 MeV. Such a mixed field was produced at the PTB accelerator facility using a thin CaF(2) + (nat)C target and a 5.7 MeV proton beam.  相似文献   

9.
Currently, teletherapy machines of cobalt and caesium are being replaced by linear accelerators. The maximum photon energy in these machines can vary from 4 to 25 MeV, and one of the great advantages of these equipments is that they do not have a radioactive source incorporated. High-energy (E > 10 MV) medical linear accelerators offer several physical advantages over lower energy ones: the skin dose is lower, the beam is more penetrating, and the scattered dose to tissues outside the target volume is smaller. Nevertheless, the contamination of undesirable neutrons in the therapeutic beam, generated by the high-energy photons, has become an additional problem as long as patient protection and occupational doses are concerned. The treatment room walls are shielded to attenuate the primary and secondary X-ray fluence, and this shielding is generally adequate to attenuate the neutrons. However, these neutrons are scattered through the treatment room maze and may result in a radiological problem at the door entrance, a high occupancy area in a radiotherapy facility. In this article, we used MCNP Monte Carlo simulation to calculate neutron doses in the maze of radiotherapy rooms and we suggest an alternative method to the Kersey semi-empirical model of neutron dose calculation at the entrance of mazes. It was found that this new method fits better measured values found in literature, as well as our Monte Carlo simulated ones.  相似文献   

10.
In radiotherapy with external beams, healthy tissues surrounding the target volumes are inevitably irradiated. In the case of neutron therapy, the estimation of dose to the organs surrounding the target volume is particularly challenging, because of the varying contributions from primary and secondary neutrons and photons of different energies. The neutron doses to tissues surrounding the target volume at the Louvain-la-Neuve (LLN) facility were investigated in this work. At LLN, primary neutrons have a broad spectrum with a mean energy of about 30 MeV. The transport of a 10×10 cm2 beam through a water phantom was simulated by means of the Monte Carlo code MCNPX. Distributions of energy-differential values of neutron fluence, kerma and kerma equivalent were estimated at different locations in a water phantom. The evolution of neutron dose and dose equivalent inside the phantom was deduced. Measurements of absorbed dose and of dose equivalent were then carried out in a water phantom using an ionization chamber and superheated drop detectors (SDDs). On the beam axis, the calculations agreed well with the ionization chamber data, but disagreed significantly from the SDD data due to the detector's under-response to neutrons above 20 MeV. Off the beam axis, the calculated absorbed doses were significantly lower than the ionization chamber readings, since gamma fields were not accounted for. The calculated data are doses from neutron-induced charge particles, and these agreed with the values measured by the photon-insensitive SDDs. When exposed to the degraded spectra off the beam axis, the SDD offered reliable estimates of the neutron dose equivalent.  相似文献   

11.
(6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescent dosemeters (TLDs) were used for measurements of out-of-field photon and neutron doses produced by Varian iX linear accelerator. Both TLDs were calibrated using 18-MV X-ray beam to investigate their dose-response sensitivity and linearity. CR-39 etch-track detectors (Luxel+, Landauer) were employed to provide neutron dose data to calibrate (6)LiF:Mg,Cu,P TLDs at various distances from the isocentre. With cadmium filters employed, slow neutrons (<0.5 eV) were distinguished from fast neutrons. The average in-air photon dose equivalents per monitor unit (MU) ranged from 1.5±0.4 to 215.5±94.6 μSv at 100 and 15 cm from the isocentre, respectively. Based on the cross-calibration factors obtained with CR-39 etch-track detectors, the average in-air fast neutron dose equivalents per MU range from 10.6±3.8 to 59.1±49.9 μSv at 100 and 15 cm from the isocentre, respectively. Contribution of thermal neutrons to total neutron dose equivalent was small: 3.1±7.2 μSv per MU at 15 cm from the isocentre.  相似文献   

12.
Secondary neutrons produced in high-energy therapeutic ion beams require special attention since they contribute to the dose delivered to patient, both to tumour and to the healthy tissues. Moreover, monitoring of neutron production in the beam line elements and the patient is of importance for radiation protection aspects around ion therapy facility. Monte Carlo simulations of light ion transport in the tissue-like media (water, A-150, PMMA) and materials of interest for shielding devices (graphite, steel and Pb) were performed using the SHIELD-HIT and MCNPX codes. The capability of the codes to reproduce the experimental data on neutron spectra differential both in energy and angle is demonstrated for neutron yield from the thick targets. Both codes show satisfactory agreement with the experimental data. The absorbed dose due to neutrons produced in the water and A-150 phantoms is calculated for proton (200 MeV) and carbon (390 MeV/u) beams. Secondary neutron dose contribution is approximately 0.6% of the total dose delivered to the phantoms by proton beam and at the similar level for both materials. For carbon beam the neutron dose contribution is approximately 1.0 and 1.2% for the water and A-150 phantoms, respectively. The neutron ambient dose equivalent, H(10), was determined for neutrons leaving different shielding materials after irradiation with ions of various energies.  相似文献   

13.
The measurements of high-energy and high dose mixed radiation from high-energy electron accelerator are carried out using a radiation damage monitor. It consists of two Radiation-Sensing Field-Effect Transistors (RADFETs) for total absorbed dose from mainly gamma ray and other charged particles and a Si PIN diode for neutron fluence. This is a part of the demagnetization study of rare earth permanent magnet irradiated by 2.5-GeV electron beam. The sensitivities of damage detectors are measured using 65-MeV quasi-monoenergic neutron, 14-MeV D-T neutron, (252)Cf neutron for Si PIN diode and (60)Co and (137)Cs gamma ray for RADFETs. Measured sensitivities are in acceptable range in the comparison of producer's proposed values. The dose and fluence measurements are carried out for the same target condition, Cu and Ta, as that for the demagnetization study. The 5 x 5 cm(2) cross-sectional and 5.5-cm-thick Pb target is also used for the general comparison with photoneutron yields. All measured dose and fluence are compared with the calculated results using the FLUKA code and agree well each other. The application of this kind of radiation damage monitor to high-level dosimetry at high-energy electron accelerator has been discussed.  相似文献   

14.
The use of high-energy linear electron accelerators (LINACs) for medical cancer treatments is widespread on an international scale. The associated bremsstrahlung X rays may produce neutrons as a result of subsequent photonuclear reactions with the different materials constituting the accelerator head. The generated neutron field is highly variable and depends strongly on the beam energy, on the accelerator shielding, on the flattering filter as well as on the movable collimators (jaws) design and on the irradiation field geometry. An estimate of this photoneutron component is, thus, of practical interest to quantify the radiological risk for the working staff and patients. Due to high frequency electromagnetic fields, and also to the presence of abundant leaked and scattered photons in these installations, measurements of the corresponding neutron fields by active dosemeters are extremely difficult. A modified version of the Bonner sphere system, based on passive gold activation detectors, has been used to perform neutron measurements at two points in a Varian 2,100C LINAC facility. A home-made unfolding procedure (CDM) has been utilised to determine the neutron spectra present at the measurement points. Results indicate that the giant dipole resonance process is the most adequate model to explain neutron production in the LINAC and that a thermal component is present at the measurement points.  相似文献   

15.
The results of measurements with neutron energies up to 60 MeV are shown for the personal neutron dosemeters Thermo Electron EPD-N2, ALOKA PDM-313 and the PTB prototype dosemeter DOS-2002. All dosemeters show dose equivalent responses that are about a factor of 10, too high at 60 MeV. A new prototype dosemeter-called DOS-2005-consisting of a detector with a thin effective layer of 6 microm has been set up at PTB. The dose equivalent response of this dosemeter and that of the newly developed dosemeter SAPHYDOSE-N was measured up to 19 MeV. Both dosemeters indicate a more flat response at high neutron energies. Further needs-optimisations, measurements and calculations-for use at high-energy accelerators and in space are discussed.  相似文献   

16.
A device based on a single silicon detector of special converter/detector design optimised for the determination of the neutron dose equivalent is also used for the determination of the photon dose equivalent. While the neutron dose is determined on the basis of signals corresponding to energy depositions above 1.5 MeV, depositions between 80 keV and 150 keV are used for the photon dose equivalent. In this way, a photon response is achieved which varies by less than 30% in the energy region from 80 keV to 7 MeV for irradiation at normal incidence and at 60 degrees to the normal. The lower limit of detection is of the order of 1 microSv. Neutrons contribute to the photon reading by less than 2% in mixed fields with a comparable dose equivalent from neutrons and photons.  相似文献   

17.
A large fraction of dose to healthy tissue located outside of the treatment field during proton therapy is attributable to neutrons produced in the beam-delivery apparatus. In this work, the neutron dose equivalent (H) per therapeutic proton absorbed dose (D) was estimated for typical treatment conditions as a function of range modulation width, angle with respect to the incident proton beam, and the distance from the isocentre at the Harvard Cyclotron Laboratory's (Cambridge, MA) passively spread treatment field using Monte Carlo simulations. For a beam with 16 cm penetration (depth) and a 5 x 5 cm2 lateral field size at the patient location along the incident beam direction at 100 cm from the isocentre, the predicted H/D values are 0.35 and 0.60 mSv Gy(-1) from the simulations and measurements, respectively. At all locations, the predicted H/D values are within a factor of 2 and 3 of the measured result for no modulation and 8.2 cm of modulation, respectively.  相似文献   

18.
The radiation fields outside the planned experimental Sub-critical Assembly in Dubna (SAD) have been studied in order to provide a basis for the design of the concrete shielding that cover the reactor core. The effective doses around the reactor, induced by leakage of neutrons and photons through the shielding, have been determined for a shielding thickness varying from 100 to 200 cm. It was shown that the neutron flux and the effective dose is higher above the shielding than at the side of it, owing to the higher fraction of high-energy spallation neutrons emitted in the direction of the incident beam protons. At the top, the effective dose was found to be -150 microSv s(-1) for a concrete thickness of 100 cm, while -2.5 microSv s(-1) for a concrete thickness of 200 cm. It was also shown that the high-energy neutrons (> 10 MeV), which are created in the proton-induced spallation interactions in the target, contribute for the major part of the effective doses outside the reactor.  相似文献   

19.
A moderator-type neutron monitor containing pairs of TLD 600/700 elements (Harshaw) modified with the addition of a lead layer (GSI ball) for the measurement of the ambient dose equivalent from neutrons at medium- and high-energy accelerators, is introduced in this work. Measurements were performed with the Gesellschaft für Schwerionenforschung (GSI) ball as well as with conventional polyethylene (PE) spheres at the high-energy accelerator SPS at European Organization for Nuclear Research [CERN (CERF)] and in Cave A of the heavy-ion synchrotron SIS at GSI. The measured dose values are compared with dose values derived from calculated neutron spectra folded with dose conversion coefficients. The estimated reading of the spheres calculated by means of the response functions and the neutron spectra is also included in the comparison. The analysis of the measurements shows that the PE/Pb sphere gives an improved estimate on the ambient dose equivalent of the neutron radiation transmitted through shielding of medium- and high-energy accelerators.  相似文献   

20.
A systematic analysis of the response of dichlorodifluoromethane superheated drop detectors was performed in the 46-133 MeV energy range. Experiments with quasi-monoenergetic neutron beams were performed at the Université Catholique de Leuvain-la-Neuve, Belgium and the Svedberg Laboratory, Sweden, while tests in a broad field were performed at CERN. To determine the response of the detectors to the high-energy beams, the spectra of incident neutrons were folded over functions modelled after the cross sections for the production of heavy ions from the detector elements. The cross sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade exciton model of nuclear interactions. The new response data permit the interpretation of measurements at high-energy accelerators and on high-altitude commercial flights, where a 30-50% under-response had been consistently recorded with respect to neutron dose equivalent. The introduction of a 1 cm lead shell around the detectors effectively compensates most of the response defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号