首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the possibility of representing the mid third of the human femur with two straight sections. This portion of the femur visually has a distinct curvature, which can potentially present problems when considering implant stem designs to be introduced in this region. Sixteen femora were sectioned at 10 mm intervals along the femoral shaft in the mid third region (35-65 per cent of femoral length). Photographic records were obtained of each section against a consistent axis system to which all coordinates were referenced. The position of the centre of the medullary canal cross-sectional area along the femur, in relation to fixed orthogonal planes, has been analysed; the outer anterior cortex was also modelled. The results showed that the medullary centre of area plots and the anterior cortex coordinates are suitably modelled as two straight lines. For each bone it was possible to define the intersection point between the two straight sections (point of angulation), and the subtended angle between these sections (angle of incidence). The average point of angulation for the medullary plots occurred at 57 per cent along the femur, while the mean angle of incidence was 6.5 degrees. The anterior surface had an average point of angulation at 58 per cent along the femur with the mean angle of incidence being 22.2 degrees. The centre-line of the medulla was also found to be almost parallel to the outer anterior surface for sections distal to the point of angulation. It is proposed therefore, that this difference in angulation is the result of medullary expansion/cortical thinning towards the proximal extremity of the femur, causing the straight-line model of the medulla to angulate less than the outer anterior cortex.  相似文献   

2.
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computer-based simulation technique for modelling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be predicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness values of the proximal femur are more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and three-dimensional FEA demonstrating a non-linear increase and decrease in sensitivity respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three-dimensional FEA demonstrated a parabolic-type relationship, with the maximum stiffness being achieved at an angle of approximately 15 degrees. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and two-dimensional FEA had statistically equal sensitivities (0.41 +/- 0.20 and 0.42 +/- 0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24 +/- 0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent on anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.  相似文献   

3.
The long-term clinical performance of a dental implant is dependent upon the preservation of good quality bone surrounding the implant and a sound interface between the bone and the biomaterial. Good quality bone is itself dependent upon the appropriate level of bone remodelling necessary to maintain the bone density and the avoidance of bone microfracture and failure. Both processes are governed by the stress and strain distribution in the bone. In this study, a dental implant which had the same geometry as the Branemark system, but with a bioactive surface coating added to produce a direct bond to the bone, was analysed. A finite element stress and strain analysis has been carried out for a range of bone density distributions under axial and lateral loading. The predictions indicated that there was no evidence of strain shielding around the neck of the implant. With lateral loading, high values of von Mises stresses (18 M Pa) were predicted around the neck of the implant. A reduction in the elastic modulus of the bone around the neck of the implant by a factor of 16 only produced a twofold reduction in the peak stress. This resulted in stress levels capable of inducing fatigue failure in this much weaker bone. This analysis has demonstrated that it is extremely important to have good quality dense bone around the neck of the implant to withstand the predicted peak stresses of between 9 and 18 M Pa. Failure to achieve this after implantation and subsequent healing may result in local fatigue failure and resorption at the neck upon resumption of physiological loading.  相似文献   

4.
Aluminium-based composites, reinforced with low volume fractions of whiskers and small particles, have been formed by a powder route. The materials have been tested in tension, and the microstructures examined using transmission electron microscopy. The whisker composites showed an improvement in flow stress over the particulate composites, and this was linked to an initially enhanced work-hardening rate in the whisker composites. The overall dislocation densities were estimated to be somewhat higher in the whisker composites than the particulate composites, but in the early stages of deformation the distribution was rather different, with deformation in the whisker material being far more localized and inhomogeneous. This factor, together with differences in the internal stress distribution in the materials, is used to explain the difference in mechanical properties.  相似文献   

5.
Good femoral bone stock is important for the stability of the femoral component in revision knee arthroplasty. However, the primary total knee replacement (TKR) may cause significant loss of bone stock in the distal anterior femur. Earlier stress-induced bone remodelling simulations have suggested that a completely debonded component may save bone stock in the distal anterior region. However, these simulations did not consider the fixation of a debonded implant and possible secondary effects of micromotions and osteolysis at the interface. The current study tries to combine the preservation of bone stock with adequate component fixation. Different bone remodelling simulations were performed around femoral knee components with different sizes of bonding area and different friction characteristics of the debonded area. The fixation of the femoral component with different bonding characteristics is quantified with calculated implant-bone interface stresses. The results show that a bonded femoral component with a debonded inner side of the anterior flange may significantly reduce bone resorption in the endangered distal anterior femur, without jeopardizing the fixation of the femoral implant. This effect may be obtained in vivo by using a femoral component with a highly polished inner side of the anterior flange.  相似文献   

6.
Some problems of how to use modern experimental facilities—an Inston 8850 biaxial servohydraulic test system and Vic 3D Limess digital optical system—for analyzing the fields of deformation and displacements in order to investigate the regularities of material inelastic deformation and failure in a complicated stressed-deformed state are examined. Proportional loading with different ratios between the axial deformation and the shear angle is implemented. Diagrams of the material deformation for different stress states are generated. The diagrams of material deformation with a drop-down branch are obtained under uniaxial tension for samples with different ratios between the length and diameter. Information about the deformation fields taking place in the plates with stress concentrators determined by means of the correlation of digital images are presented.  相似文献   

7.
Osteoporosis is one of the most dangerous skeletal diseases in relation to the highest fracture risk in vertebral bones. A considerable amount of work has been done to investigate the biomechanical characteristics of osteoporotic vertebral trabecular bone. Previous researchers studied the elastic characteristics using a micro-finite element (micro-FE) model, used to analyze realistic trabecular architectures in full detail, based on micro-computed tomography (μCT). Since osteoporotic compression fracture is closely associated with the mechanical characteristics of the vertebral trabecular bone and there were few micro-FE models to account for all of the elastic and plastic characteristics in vertebral trabecular bone, this study analyzed the effect of voxel resolution on the plastic characteristics as well as the elastic characteristics of three-dimensional (3D) osteoporotic lumbar trabecular bone models. Also, we evaluated the effect of specimen geometry on this problem. It has been reported that a cubic specimen with side length 6.5mm was suggested as standard specimens for the experimental test of trabecular bone. Current study examined whether or not the effect of the specimen geometry on the experimental test may be also applied to the simulated compression test of trabecular bone specimens. The experimental test employing the rapid prototyping (RP) technique and INSTRON test machine is performed to indirectly validate the results of the simulated compression test by micro-FE analysis. The review finished with the verification about the effects of the simulated compression test.  相似文献   

8.
The aim of this study was the biomechanical evaluation of the reversed less invasive stabilization system (LISS) internal fixation as a joint-preserving salvage procedure for trochanteric fractures. Five LISS plates and five dynamic condylar screws (DCS) were tested using synthetic femora (Sawbones) with an osteotomy model similar to a type-A2.3 pertrochanteric fracture. The constructs were subjected to axial loading up to 1000 N for five cycles. Then, the force was continuously increased until fixation failure. For the evaluation of the biomechanical behaviour, the stiffness levels were recorded and the osteotomy gap displacement was mapped three-dimensionally. The average stiffness for the constructs with LISS plates was 412 N/mm (with a standard deviation (SD) of 103N/mm) and 572N/mm (SD of 116 N/mm) for the DCS constructs (p=0.051). Local displacement at the osteotomy gap did not yield any significant differences. The LISS constructs failed at a mean axial compression of 2103N (SD of 519N) and the DCS constructs at a mean of 2572N (SD of 372N) (p=0.14). It is concluded that the LISS plate offers a reliable fixation alternative for salvage procedures.  相似文献   

9.
The aim of the present work was to assess how growth and remodelling changed the morphology of the transplanted fibula used to reconstruct the proximal femur of a 5 year old child affected by a Ewing's sarcoma during the first 3 years of follow-up. The morphological evolution of the transplant was quantitatively assessed on diagnostic images. Special software was developed to perform three-dimensional measurements on computed tomography (CT) datasets, while state-of-the-art image processing software was used for conventional radiography. The measurements were then correlated with the loads expected to act on the hip during the various stages of the rehabilitation protocol. A simple cantilever beam model was used for a gross estimate of the risk of fracture of the transplant. The results of the analysis showed that there is no clear correlation between the morphological changes of the autograft and the hip loading conditions experienced. Apart from a drastic increase in the periosteal radius in the frontal plane, occurring in the first 10 months after the operation, the growth of the transplanted fibula seems well within the ranges of the normal fibular growth. The cantilever beam model suggested that, although the autograft is currently subjected to subcritical stresses. morphological evolution could increase the risk of fracture in the next few years if a normal level of loading were allowed.  相似文献   

10.
Comprehension of the biomechanical behaviour of orthopaedic implants is essential. This paper describes the development of an in vitro model to investigate the behaviour of femoral implants in the revision setting. The development of a femoral model and a bone graft substitute is described. The properties of human, bovine, ovine morselized bone graft, and a graft substitute were compared. On measuring hoop strain after impaction bone grafting there was no significant difference between the ovine bone graft and graft substitute with the size 1 Exeter stem. The results suggest that this bone graft substitute is a viable alternative for in vitro testing. The authors recommend the use of the graft substitute and the femoral model to predict femoral stem biomechanics.  相似文献   

11.
There has not been a satisfying method to predict the fracture risk in tumorous bone lesions. To tackle this challenge, we used a finite element method to assess the fracture risk in the proximal tibia (pT) when the size and location of the tumorous defects are varied in bone. Towards this end, the circular cortical defects, mimicking the tumorous lesions by forming cortical window defects, with a diameter (Ф) of 20, 30, 40, or 50 mm, are structured on the anteromedial, lateral, posterior wall of pT, which is located 5, 15, and 25 mm below articular margin, respectively. We found that under walking conditions, the Von Mises Stress of each defective tibia model was larger than that of the intact tibia model and also showed a positive linear correlation with the sizes of the defects. A notable fracture risk was not observed until the defect was Ф30 mm or larger. When the defect emerged, the anteromedial wall resisted fracture risk more than the rest of wall. Our results show that the size and location of the bone tumors are important factors affecting the fracture risk of pT. Our findings will be beneficial to clinicians when deciding what treatment to use for pT lesions.  相似文献   

12.
Mechanical interlock obtained by penetration of bone cement into cancellous bone is critical to the success of cemented total hip replacement (THR). Although acetabular component loosening is an important mode of THR failure, the properties of acetabular cancellous bone relevant to cement penetration are not well characterized. Bone biopsies (9 mm diameter, 10 mm long) were taken from the articular surfaces of the acetabulum and femoral head during total hip replacement. After mechanical and chemical defatting the two groups of bone specimens were characterized using flow measurement, mechanical testing and finally serial sectioning and three-dimensional computer reconstruction. The mean permeabilities of the acetabular group (1.064 x 10(-10) m2) and femoral group (1.155 x 10(-10) m2) were calculated from the flow measurements, which used saline solution and a static pressure of 9.8 kPa. The mean Young's modulus, measured non-destructively, was 47.4 MPa for the femoral group and 116.4 MPa for the acetabular group. Three-dimensional computer reconstruction of the specimens showed no significant differences in connectivity and porosity between the groups. Results obtained using femoral head cancellous bone to investigate bone cement penetration and fixation are directly relevant to fixation in the acetabulum.  相似文献   

13.
Pertrochanteric femoral fractures are common and intramedullary nailing is an accepted method for their surgical treatment. Accurate placement of the implant is essential to ensure fixation. The conventional technique can require multiple guide wire passes, and relies heavily on fluoroscopy. A computer-assisted planning and navigation system based on two-dimensional fluoroscopy for guide wire placement in the femoral neck has been developed, in order to perform intramedullary pertrochanteric fracture fixation using the proximal femoral nail (PFNA). The planning process was supported by a 'zero-dose C-arm navigation' system. The PFNA was inserted into 12, intact, femoral sawbones guided by the computer-based navigation, and into 12, intact, femoral sawbones using a conventional fluoroscopic-assisted technique. Guide wire and subsequent blade placement in the femoral neck was evaluated. The computer-assisted technique achieved a significant decrease in the number of required fluoroscopic images and in the number of guide wire passes. The obtained average blade placement accuracy in the femoral neck was equivalent to the conventional technique. The operation time was significantly longer in the navigation-assisted group. The addition of computer-assisted planning and surgical guidance to the intramedullary nailing of pertrochanteric femoral fractures offers a number of clinical benefits based on the results of this sawbone study. Further studies including fractured sawbones and cadaver models with extension of the navigation process to all steps of PFNA introduction and with the goal of reducing operation time are indispensable before integration of this navigation system into clinical practice.  相似文献   

14.
Stem fractures in prosthetic femoral components are a well recognized problem. More recently neck fractures have been described. An unusual case of a 'sub-capital fracture' in a femoral component is described.  相似文献   

15.
In this paper the torsion problem of a circular bar with fixed ends is solved using a finite deformation constitutive model based on the corotational rates of the logarithmic strain. The logarithmic, Green–Naghdi and Eulerian corotational rates of the logarithmic strain are used in the model. The solution is based on a von Mises type yield function that incorporates isotropic and kinematic hardenings. For the kinematic hardening, a modified Armstrong–Fredrick hardening model with the corotational rate of the logarithmic strain is used. Assuming incompressible behavior, the fixed-end torsion problem is simplified to the simple shear problem. Solving the problem, the stress components are integrated to calculate the torque and axial force. It is qualitatively shown that the results based on the logarithmic corotational rate are in good agreement with the experimental results.  相似文献   

16.
Stereology applied on histological sections is the ‘gold standard’ for obtaining quantitative information on cancellous bone structure. Recent advances in micro computed tomography (µCT) have made it possible to acquire three-dimensional (3D) data non-destructively. However, before the 3D methods can be used as a substitute for the current ‘gold standard’ they have to be verified against the existing standard. The aim of this study was to compare bone structural measures obtained from 3D µCT data sets with those obtained by stereology performed on conventional histological sections using human tibial bone biopsies. Furthermore, this study forms the first step in introducing the proximal tibia as a potential bone examination location by peripheral quantitative CT and CT. Twenty-nine trabecular bone biopsies were obtained from autopsy material at the medial side of the proximal tibial metaphysis. The biopsies were embedded in methylmetacrylate before µCT scanning in a Scanco µCT 40 scanner at a resolution of 20 × 20 × 20 µm3, and the 3D data sets were analysed with a computer program. After µCT scanning, 16 sections were cut from the central 2 mm of each biopsy and analysed with a computerized method. Trabecular bone volume (BV/TV) and connectivity density (CD) were estimated in both modalities, whereas trabecular bone pattern factor (TBPf) was estimated on the histological sections only. Trabecular thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp), and structure model index (SMI) were estimated with the µCT method only. Excellent correlations were found between the two techniques for BV/TV (r = 0.95) and CD (r = 0.95). Additionally, an excellent relationship (r = 0.95) was ascertained between TBPf and SMI. The study revealed high correlations between measures of bone structure obtained from conventional 2D sections and 3D µCT data. This indicates that 3D µCT data sets can be used as a substitute for conventional histological sections for bone structural evaluations.  相似文献   

17.
The International Journal of Advanced Manufacturing Technology - Research and development of polyetheretherketone (PEEK) composites with high thermal conductivities and ideal thermal stabilities...  相似文献   

18.
The technique of experimental model testing was applied to the analysis of stress at selected sites in bone cement underlying a tibial plateau. The investigation utilized a large model knee fabricated from materials which had mechanical properties similar to the actual tibial plateau and acrylic cement but which did not duplicate adequately the complexity of bone. A porous interface was created in the model between the materials representing the bone and cement. Three-dimensional strain rosettes were embedded into the cement and the model was loaded in a varus or valgus mode. Overloading resulted in breakdown of the modelled anterior and part of the posterior cement-bone interfaces, producing non-linear and in some cases erratic strains in the anterior section but repeatable linear results in the posterior section. The investigation highlighted the necessity for three-dimensional strain gauge investigations as opposed to two-dimensional studies. It is suggested that the approach could provide comparative information about different products and form the basis for a valuable design tool.  相似文献   

19.
The aim of this paper was to propose a novel approach to the ultrasound (US) characterization of human bones through an improved measurement of the apparent integrated backscatter (AIB). Four intact human femoral heads were studied ex vivo in their physiologic morphological configuration, including cartilaginous, cortical and trabecular regions. Each sample underwent an US acquisition performed with a clinically-available echographic device and a micro-computed tomography (micro-CT) scan, whose spatial resolution was preliminarily optimized for this specific purpose. A dedicated US signal compensation was employed in the AIB computation, to take into account the variability of sample-probe distance and cortical bone thickness. Obtained results showed an appreciable global correlation between AIB and the trabecular bone volume fraction as quantified by the micro-CT parameter BV/TV (|r| = 0.69). The proposed approach has interesting perspectives for a clinical translation as an innovative method for in vivo US measurement of proximal femur bone density.  相似文献   

20.
Homogenized elastic properties are often assumed for macro-finite element (FE) models used in orthopaedic biomechanics. The accuracy of material property assignments may have a strong effect on the ability of these models to make accurate predictions. For cortical bone, most macro-scale FE models assume isotropic elastic material behaviour and do not include variation of material properties due to bone micro-architecture. The first aim of the present study was to evaluate the variation of apparent-level (homogenized) orthotropic elastic constants of cortical bone with age and indices of bone micro-architecture. Considerable age-dependent differences in porosity were noted across the cortical thickness in previous research. The second aim of the study was to quantify the resulting differences in elastic constants between the periosteum and endosteum. Specimens were taken from the anterior femoral midshaft of 27 female donors (age 53.4 +/- 23.6 years) and micro-FE (gFE) analysis was used to derive orthotropic elastic constants. The variation of orthotropic elastic constants (Young's moduli, shear moduli, and Poisson's ratios) with various cortical bone micro-architectural indices was investigated. The ratio of canal volume to tissue volume, Ca.V/TV, analogous to porosity, was found to be the strongest predictor (r2(ave) = 0.958) of the elastic constants. Age was less predictive (r2(ave) = 0.385) than Ca.V/TV. Elastic anisotropy increased with increasing Ca.V/TV, leading to lower elastic moduli in the transverse, typically less frequently loaded, directions. Increased Ca.V/TV led to a more substantial reduction in elastic constants at the endosteal aspect than at the periosteal aspect. The results are expected to be most applicable in similar midshaft locations of long bones; specific analysis of other sites would be necessary to evaluate elastic properties elsewhere. It was concluded that Ca.V/TV was the most predictive of cortical bone elastic constants and that considerable periosteal-endosteal variations in these constants can develop with bone loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号