首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
This paper presents the effects and adaptability of palm oil fuel ash (POFA) as a replacement material in fly ash (FA) based geopolymer mortar from the aspect of microstructural and compressive strength. The geopolymers developed were synthesized with a combination of sodium hydroxide and sodium silicate as activator and POFA and FA as high silica–alumina resources. The development of compressive strength of POFA/FA based geopolymers was investigated using X-ray florescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM). It was observed that the particle shapes and surface area of POFA and FA as well as chemical composition affects the density and compressive strength of the mortars. The increment in the percentages of POFA increased the silica/alumina (SiO2/Al2O3) ratio and that resulted in reduction of the early compressive strength of the geopolymer and delayed the geopolymerization process.  相似文献   

3.
4.
While high volume fly ash (HVFA) concretes can be designed and produced to meet 28-d strength requirements and often even exceed the durability performance of conventional concretes, a persistent problem is the potentially long delay in setting time that produces concurrently long delays in finishing the concrete in the field. Previous isothermal calorimetry studies on two different powder additions, namely calcium hydroxide and a rapid set cement, have shown that these powders can mitigate excessive retardation of the hydration reactions. In this paper, rheological measurements and conventional Vicat setting time studies are conducted to verify that these powder additions do indeed reduce setting times in paste systems based on both ASTM Class C and ASTM Class F fly ashes. The reductions depend on the class of fly ash and suggest that trial mixtures would be a necessity to apply these technologies to each specific fly ash/cement/admixture combination being employed in the field. Potentially, for such screening studies, the rheological measurement of yield stress may provide a faster indication of setting (and finishability) than conventional Vicat needle penetration measurements on pastes.  相似文献   

5.
This paper focuses on testing performed on mixtures that would be consistent with the mortar portion of a concrete bridge deck mixture for many state departments of transportation. In this work a relatively large percentage of cement (40%, 60%, or 80% by volume) is replaced with Class C fly ash. To overcome concerns associated with slow set and early-age strength development that are often expressed with the high volume fly ash mixtures (HVFA), the water-to-cementitious materials ratio (w/cm) by mass has been reduced from a conventional value of 0.42 to 0.30. To overcome potential complications that the low w/cm may cause in terms of self-desiccation, internal curing (IC) with prewetted lightweight aggregate was used to reduce shrinkage and increase hydration. By adopting this approach (lowering the w/c and using IC) IC HVFA mixtures show additional benefits that should permit their broader application.  相似文献   

6.
郭振华  刘波 《功能材料》2007,38(A09):3453-3457
从海泡石纤维和粉煤灰纤维的微观结构特性出发,进行粉煤灰,海泡石复合纤维增强沥青复合材料的制备。通过路用性能试验,研究了海泡石纤维和粉煤灰纤维对沥青混合料性能的影响以及结合机理。结果表明,添加适量海泡石和粉煤灰纤维可以制备性能优良的纤维复合沥青混合料。海泡石纤维对沥青表现极强吸持能力,有效调节沥青与胶浆的含量。粉煤灰纤维在沥青中主要起加固和改善混合料的作用。两种纤维的添加,使沥青混合料的高温变形性、水稳定性、低温抗裂性和抗疲劳性等显著提高。  相似文献   

7.
8.
High volume fly ash (HVFA) concrete mixtures are being considered more frequently due to their cost and sustainability advantages. While the long term performance of these HVFA concretes typically meets or exceeds that of conventional concretes, their early age performance is often characterized by excessive retardation of the hydration reactions, delayed setting times, and low strengths. Extending an HVFA mixture to a ternary blend that incorporates a fine limestone powder may provide a viable solution to these deficiencies, particularly the hydration retardation and setting issues. In this paper, a nano-limestone powder and two other limestone fillers of increasing median particle size (4.4 μm and 16.4 μm) are investigated for their propensity to accelerate early age reactions and reduce setting times in a Class C fly ash/cement blend. The fineness of the limestone has measurable effects on its efficacy in accelerating hydration and decreasing setting times. Companion specimens prepared with a fine silica powder suggest that the fine limestone may act favorably through both a physical and a chemical mechanism. Isothermal calorimetry and Vicat needle penetration measurements on pastes are accompanied by strength measurements on mortars, to verify that the limestone powder substitutions are not negatively impacting strength development. A linear relationship with a reasonable correlation is found to exist between 1 d and 7 d compressive strengths of mortars and their accompanying cumulative heat release values as determined using isothermal calorimetry.  相似文献   

9.
The transport of fluid and ions in concrete mixtures is central to many aspects of concrete deterioration. As a result, transport properties are frequently measured as an indication of the durability that a concrete mixture may be expected to have. This paper is the second in a series investigating the performance of high volume fly ash (HVFA) mixtures with low water-to-cementitious ratios (w/cm) that are internally cured. While the first paper focused on strength and shrinkage, this paper presents the evaluation of the transport properties of these mixtures. Specifically, the paper presents results from: rapid chloride migration (RCM), rapid chloride penetration test (RCPT), apparent chloride diffusion coefficient, surface electrical resistivity, and water absorption. The test matrix consisted of mortar samples with two levels of class C fly ash replacement (40% and 60% by volume) with and without internal curing provided with pre-wetted lightweight fine aggregates (LWA). These mixtures are compared to plain ordinary portland cement (OPC) mortars. The results indicate that HVFA mixtures with and without internal curing provide benefits in terms of reduced transport coefficients compared to the OPC mixtures.  相似文献   

10.
The use of power-industry wastes as a material for earthen structures depends on its compactibility. It has been confirmed that a fly ash/bottom ash mix compacted several times in Proctor's moulds are not representative. The relationship between dry density of solid particles and water content for re-used waste samples was determined. The re-compaction effect on grain-size distribution, density of solid particles, specific surface and sand equivalent of wastes was investigated. Tests were conducted on fly ash samples compacted by the Standard and Modified Proctor methods. Another aim of the paper was to investigate the influence of cement additions on the compactibility of a fly ash/bottom ash mix. Waste samples in the natural state and with different percentages of cement additions (2, 5 and 10%) were compacted by both impact compaction methods to obtain compactibility curves rhod(w). It was found that cement addition resulted in an increased rhod max value, while wopt decreased. Linear regression relationships for changes in compaction parameters after cement stabilisation are also given.  相似文献   

11.
作为火力发电厂的废弃物,粉煤灰(FA)可改善聚合物材料的诸多性能。讨论了复合材料中FA的含量、表面改性及其它填料的复配使用与复合材料力学性能间的关系;综述了近年来,FA改性聚合物多项性能(结晶、热稳定与阻燃等)的研究进展。  相似文献   

12.
Fuel oil fly ash has been tested as low-cost carbon-based adsorbent of 2-chlorophenol (CP), 2-chloroaniline (CA) and methylene blue (MB) from aqueous solutions. In all the cases the adsorption was found to be of cooperative type. Different adsorption capacities were found for the three organics. Specifically, it was highest for 2-chlorophenol, reaching about 70 mg g(-1), and quite lower in the other two cases, that is about 47 and 36 mg g(-1) for methylene blue and 2-chloroaniline, respectively. Varying the initial pH and adding KCl were found to have different effects on the adsorption of the three organics. In particular, the presence of other ions had no effect on the adsorption of methylene blue, adverse effect in the case of 2-chlorophenol and enhancing effect in the case of 2-chloroaniline.  相似文献   

13.
In this article, composites with polyurea as the matrix were prepared. Fly ash (FA) is a waste product of thermal power stations generated in huge quantities and consists of hollow particles with porous shells. These particles were employed as the filler. The volume fraction and particle size of FA were varied to study their effects on the density and tensile properties of the composites. The tensile tests were performed using an Instron load frame combined with a digital camera. Scanning electron microscopy (SEM) was used to observe the fracture surfaces of the composites. Results indicated that the addition of FA linearly decreased the density of the composites. Tensile stress and elongation at break of all composites decreased with an increasing volume fraction of FA. The moduli at 100 and 300% elongation of the composites with small- or medium-sized FA particles increased up to a certain value and declined with further addition of FA. Fractographic analysis showed that large FA particles were crushed, while finer particles tended to debond.  相似文献   

14.
MSW fly ash stabilized with coal ash for geotechnical application   总被引:7,自引:0,他引:7  
The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.  相似文献   

15.
粉煤灰/聚丙烯酸钠高吸水复合材料的研制   总被引:5,自引:0,他引:5  
凌辉  沈上越  范力仁  舒小伟 《功能材料》2006,37(11):1812-1815
粉煤灰能够吸水蓄水,并且从"植物→煤→粉煤灰"转化历程可见粉煤灰自身含有多种营养元素,对土壤有很好的改良效果.本研究首次以丙烯酸和粉煤灰为原料,采用溶液聚合法制备粉煤灰/聚丙烯酸钠高吸水复合材料,以使高吸水材料成本降低,环境相容性提高.实验表明,当温度为70℃,以丙烯酸单体为基准,中和度为100%,交联剂添加量为0.050%,引发剂添加量为0.250%,粉煤灰添加量为50%时,所合成的复合材料吸蒸馏水和自来水倍率最高,分别为443.6、192.2g/g.同时,红外光谱分析也能说明粉煤灰已经很好地复合到聚合物当中.  相似文献   

16.
The electricla behavior of polymer-modified cement mortars has been evaluated as a function of the polymer and the evaporable water contents. The effects have been correlated to microstructural changes induced by the addition of an acrylic polymer and an epoxy resin purposely formulated for cement-based composites. Moreover, the effect of the addition of pulverized fly ash, which has proved to be beneficial on many of the cement composite properties, has also been studied. Polymer modified cement mortar composites exhibit a tendency towards insulating behavior which is greatly enhanced by water losses: the electrical properties must thus be carefully evaluated when static charge accumulation is not desired. The addition of pulverized fly ash to ordinary Portland mortars slightly influences the electrical behaviour, but strongly enhances the insulating behaviour of polymer modified cement mortars.  相似文献   

17.
The texts presented hereunder are drafts which are submitted for comment, particularly relating to the reference material in section 7.2.2 and 7.4.1. The final recommendations will be drawn up by the committee with respect to the possible comments that should be sent to the Chairman of the committee: Professor Dr.-Ing. K. Wesche, Institute of Building Research, Aachen University of Technology, Schinkelstr. 3, D-5100 Aachen, Germany, before December 31, 1989.  相似文献   

18.
This paper reports the results of experiments done to examine the explosibility of the waste products (fly ash and bottom ash) from pulverized fuels (coal and petroleum coke). Tests were conducted for the fly and bottom ashes alone and also for selected fly ashes blended with the fuels. The explosion parameters of interest were explosion pressure and rate of pressure rise. The fly ashes showed no propensity to explode, whereas one of the bottom ashes did show limited explosibility. Both findings can be explained with reference to the volatile matter content of the ashes. Admixture of either coal or petroleum coke with fly ash resulted in explosible mixtures at volatile contents in the range of 7-13%, with the value being dependent on the composition of the mixture components and their particle sizes.  相似文献   

19.
This paper reports the dielectric properties of fly ash. The dielectric measurements were performed as a function of frequency and temperature. The sample of fly ash shows almost similar behaviour in the frequency and temperature range studied. The large value of dielectric constant in the typical frequency range is because of orientation polarization and tight binding force between the ions or atoms in the fly ash. The sample of fly ash is of great scientific and technological interest because of its high value of dielectric constant (104).  相似文献   

20.
Possible applications for municipal solid waste fly ash   总被引:19,自引:0,他引:19  
The present study focuses on existing practices related to the reuse of Municipal Solid Waste (MSW) fly ash and identifies new potential uses. Nine possible applications were identified and grouped into four main categories: construction materials (cement, concrete, ceramics, glass and glass-ceramics); geotechnical applications (road pavement, embankments); "agriculture" (soil amendment); and, miscellaneous (sorbent, sludge conditioning). Each application is analysed in detail, including final-product technical characteristics, with a special emphasis on environmental impacts. A comparative analysis of the different options is performed, stressing the advantages but also the weaknesses of each option. This information is systemized in order to provide a framework for the selection of best technology and final products. The results presented here show new possibilities for this waste reuse in a short-term, in a wide range of fields, resulting in great advantages in waste minimization as well as resources conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号