首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The supersonic flutter analysis of simply supported FG cylindrical shell for different sets of in-plane boundary conditions is performed. The aeroelastic equations of motion are constructed using Love’s shell theory and von Karman–Donnell-type of kinematic nonlinearity coupled with linearized first-order potential (piston) theory. The material properties are assumed to be temperature-dependant and graded across the thickness of the shell according to a simple power law. The temperature distribution is assumed to vary in the thickness direction and is obtained by solving the steady-state heat conduction equation. The pre-stresses due to the thermal and mechanical loadings are obtained by exact solution of the equilibrium equations. The Galerkin method is used to solve the aeroelastic equations of motion employing appropriate displacement functions. The effects of internal pressure and temperature rise on the flutter boundaries of the simply supported FG cylinder with different values of power-law index are investigated.  相似文献   

2.
The non-linear flutter and thermal buckling of an FGM panel under the combined effect of elevated temperature conditions and aerodynamic loading is investigated using a finite element model based on the thin plate theory and von Karman strain-displacement relations to account for moderately large deflection. The aerodynamic pressure is modeled using the quasi-steady first order piston theory. The governing non-linear equations are obtained using the principal of virtual work adopting an approach based on the thermal strain being a cumulative physical quantity to account for temperature dependent material properties. This system of non-linear equations is solved by Newton–Raphson numerical technique. It is found that the temperature increase has an adverse effect on the FGM panel flutter characteristics through decreasing the critical dynamic pressure. Decreasing the volume fraction enhances flutter characteristics but this is limited by structural integrity aspect. The presence of aerodynamic flow results in postponing the buckling temperature and in suppressing the post buckling deflection while the temperature increase gives way for higher limit cycle amplitude.  相似文献   

3.
Aero-thermoelastic stability of functionally graded plates   总被引:1,自引:0,他引:1  
In this paper, an analytical investigation intended to determine the aero-thermoelastic stability margins of functionally graded panels is carried out. For this purpose, piston theory aerodynamics has been employed to model quasi-steady aerodynamic loading. The material properties of the plate are assumed to be graded continuously across the panel thickness. A simple power-law and the Mori–Tanaka scheme are used for estimating the effective material properties such as temperature-dependent thermoelastic properties. The effects of compressive in-plane loads and both uniform and through the thickness non-linear temperature distributions are also considered. Hamilton’s principle is used to determine the coupled partial differential equations of motion. Using Galerkin’s method, the derived equations are transformed into a set of coupled ordinary differential equations, and then solved by numerical time integration. Some examples comparing the stability margins of functionally graded panels with those of plates made of pure metals and pure ceramics are presented. It is shown that the use of functionally graded materials can yield an increase or decrease of the aeroelastic stability in the supersonic flow for different regions.  相似文献   

4.
A free vibration analysis of metal and ceramic functionally graded conical shell panels is presented using the element-free kp-Ritz method. The first-order shear deformation shell theory is used to account for the transverse shear strains and rotary inertia, and mesh-free kernel particle functions are employed to approximate the two-dimensional displacement fields. The material properties of the conical shell panels are assumed to vary continuously through their thickness in accordance with a power-law distribution of the volume fractions of their constituents. Convergence studies are performed in terms of the number of nodes, and comparisons of the current solutions and those reported in literature are provided to verify the accuracy of the proposed method. Two types of functionally graded conical shell panels, including Al/ZrO2 and Ti–6Al–4V/aluminum oxide, are chosen in the study, and the effects of the volume fraction, boundary condition, semi-vertex angle, and length-to-thickness ratio on their frequency characteristics are discussed in detail.  相似文献   

5.
Considering the application of functionally graded (FG) materials in various industries, the present study aims to investigate bending of moderately thick clamped FG conical panels subjected to uniform and non-uniform distributed loadings. Effective mechanical properties which are vary from one surface of the panel to the other assumed to be defined by a power law distribution. Three different ceramic–metal sets of materials are studied. First-order shear deformation theory (FSDT) is applied to drive the governing equations of the problem which consists of five highly coupled second order partial differential equations (PDEs). The governing equations are then solved by the Extended Kantorovich Method (EKM). It is also shown that the presented formulation and solution technique can be used to obtain accurate predictions for other types of structures such as circular cylinders and rectangular plates. Predictions for cylindrical panels and plates show very good agreement with published data in the literature. Due to lack of data for FG conical panels in the literature, finite element code ANSYS is used to validate results of the presented method for FG conical panels which show very good agreement.  相似文献   

6.
This paper presents an analytical approach to investigate the linear buckling of truncated conical panels made of functionally graded materials and subjected to axial compression, external pressure and the combination of these loads. Material properties are assumed to be temperature-independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. Equilibrium and linear stability equations in terms of displacement components for conical panels are derived by using the classical thin shell theory. Approximate analytical solutions are assumed to satisfy simply supported boundary conditions and Galerkin method is applied to obtain closed-form relations of bifurcation type buckling loads. An analysis is carried out to show the effects of material and geometrical properties and combination of loads on the linear stability of conical panels.  相似文献   

7.
G.G. Sheng  X. Wang   《Composite Structures》2009,90(4):448-457
An analytical method on active vibration control of smart FG laminated cylindrical shells with thin piezoelectric layers is presented based on Hamilton’s principle. The thin piezoelectric layers embedded on inner and outer surfaces of the smart FG laminated cylindrical shell act as distributed sensor and actuator, which are used to control vibration of the smart FG laminated cylindrical shell under thermal and mechanical loads. Here, the modal analysis technique and Newmark’s integration method are used to calculate the dynamic response of the smart FG laminated cylindrical shell with thin piezoelectric layers. Constant-gain negative velocity feedback approach is used for active vibration control with the structures subjected to impact, step and harmonic excitations. The influences of different piezoelectric materials (PZT-4, BaTiO3 and PZT-5A) and various loading forms on the active vibration control are described in the numerical results.  相似文献   

8.
The free vibration analysis of rotating functionally graded (FG) cylindrical shells subjected to thermal environment is investigated based on the first order shear deformation theory (FSDT) of shells. The formulation includes the centrifugal and Coriolis forces due to rotation of the shell. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The initial thermo-mechanical stresses are obtained by solving the thermoelastic equilibrium equations. The equations of motion and the related boundary conditions are derived using Hamilton’s principle. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to discretize the thermoelastic equilibrium equations and the equations of motion. The convergence behavior of the method is demonstrated and comparison studies with the available solutions in the literature are performed. Finally, the effects of angular velocity, Coriolis acceleration, temperature dependence of material properties, material property graded index and geometrical parameters on the frequency parameters of the FG cylindrical shells with different boundary conditions are investigated.  相似文献   

9.
Geometrically nonlinear vibrations of functionally graded (FG) doubly curved shells subjected to thermal variations and harmonic excitation are investigated via multi-modal energy approach. Two different nonlinear higher-order shear deformation theories are considered and it is assumed that the shell is simply supported with movable edges. Using Lagrange equations of motion, the energy functional is reduced to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities which is truncated based on solution convergence. A pseudo-arclength continuation and collocation scheme is employed to obtain numerical solutions for shells subjected to static and harmonic loads. The effects of FGM power law index, thickness ratio and temperature variations on the frequency–amplitude nonlinear response are fully discussed and it is revealed that, for relatively thick and deep shells, the Amabili–Reddy theory which retains all the nonlinear terms in the in-plane displacements gives different and more accurate results.  相似文献   

10.
Postbuckling of plates and shells is an important and cumbersome problem in the structural stability field. Presently, postbuckling behaviors of elastoplastic functionally graded cylindrical shells are investigated by a numerical simulation. The elastoplastic material properties are assumed to be of a multilinear hardening type, according to the constituent distributions, and are modeled using the laminate method. The Riks algorithm is used to obtain the equilibrium path. The postbuckling deformation and stain history of elastoplastic functionally graded cylindrical shells are investigated and various effects of the shell thickness and the constituent distributions are discussed. The results show material unloading effects in the postbuckling state.  相似文献   

11.
The article is concerned with the analysis of panel flutter of heated circular clamped cylindrical shells made of functionally graded (FG) material, which are subject to a simultaneous action of the external supersonic gas flow and the internal flow of ideal compressible fluid. The effective properties of the material change throughout the thickness of the shell according to a power law and depend on temperature. The aerodynamic pressure is calculated based on the quasi-static aerodynamic theory. The behavior of the fluid is described in the framework of the potential theory. A mathematical formulation of the dynamic problem for elastic structure is developed based on the classical theory of shells and the principle of virtual displacements. Based on the results of numerical simulation the influence of different consistencies of the examined FG materials, thermal load, and internal flow velocity on the boundary of aeroelastic stability is analyzed.  相似文献   

12.
In this study, the thermal post-buckling behaviors and linear flutter analysis of structurally damped functionally graded (FG) panels under a supersonic airflow are investigated. The material properties are assumed to be temperature-dependent and vary in the thickness direction of the panel. First-order shear-deformation theory (FSDT) is applied to model the panel, and the von Karman strain–displacement relations are adopted to consider the geometric nonlinearity. In addition, the damping is modeled as the Rayleigh damping, and first-order piston theory is applied for the supersonic aerodynamic load. Results are obtained for the thermal post-buckling behavior, and linear flutter analysis of FG panels with a damping effect is performed to search for the origin of the flutter. The numerical data are validated through a comparison with the previous works, and the effects of structural damping are discussed in detail for various cases.  相似文献   

13.
An efficient high-fidelity shell model is developed for heterogeneous multilayer cylindrical shells made of functionally graded material by using the variational asymptotic method (VAM). Taking advantage of the smallness parameters inherent in the shell structure, the VAM is applied to rigorously decouple the 3-D, anisotropic elasticity problem into a 1-D through-the-thickness analysis and a 2-D shell analysis. The through-the-thickness analysis servers as a link between the original 3-D analysis and the shell analysis by providing a constitutive model for the shell analysis and recovering the 3-D field variables in terms of global responses calculated by the shell analysis. The present model is valid for large displacements and global rotations and can capture all the geometric nonlinearity of a shell when the strains are small. A cylindrical bending example of a homogeneous substrate with a thin SiC-Al functionally graded coating under sinusoidal pressure on the top surface is used to validate this model.  相似文献   

14.
In this paper cylindrical shells made of functionally graded materials (FGMs) are studied. A two-constituent material distribution through the thickness is considered, varying with a simple power rule of mixture. The equations governing the FGMs shells are determined using a variational formulation arising from the Naghdi theory. Moreover a strategy to achieve an improved transverse shear factor is investigated by energy equivalence. To approximate the problem a family of mixed-interpolated finite elements is used. It is based on a suitable reduction of the shear and membrane energy. Several numerical simulations are carried out in order to show the capability of the proposed elements to capture the properties of shells of various gradings, subjected to thermo-mechanical loads.  相似文献   

15.
An approximate solution is presented to investigate the effects of thermal load on the frequency of ring-stiffened rotating functionally graded conical shell. Material properties and the temperature field are assumed to be graded and varied in the thickness direction. The shell is reinforced by equal interval rings. The equations of motion are derived by the Hamilton's principle. Approximate analytical solutions are assumed to satisfy clamped boundary conditions, and then Fourier decomposition and Galerkin method are applied to achieve relations of frequencies. To validate, the comparisons are made with a number of particular cases in literature and with the FEM solutions.  相似文献   

16.
The objective of this work is to present a Haar Wavelet Discretization (HWD) method-based solution approach for the free vibration analysis of functionally graded (FG) spherical and parabolic shells of revolution with arbitrary boundary conditions. The first-order shear deformation theory is adopted to account for the transverse shear effect and rotary inertia of the shell structures. Haar wavelet and their integral and Fourier series are selected as the basis functions for the variables and their derivatives in the meridional and circumferential directions, respectively. The constants appearing in the integrating process are determined by boundary conditions, and thus the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equations. The proposed approach directly deals with nodal values and does not require special formula for evaluating system matrices. Also, the convenience of the approach is shown in handling general boundary conditions. Numerical examples are given for the free vibrations of FG shells with different combinations of classical and elastic boundary conditions. Effects of spring stiffness values and the material power-law distributions on the natural frequencies of shells are also discussed. Some new results for the considered shell structures are presented, which may serve as benchmark solutions.  相似文献   

17.
In this Part, the extensive parametric studies performed are reported and numerical results are presented for the buckling and postbuckling of fiber reinforced polymer matrix and metal matrix composite laminated shells subjected to axial compression or external pressure under different sets of environmental conditions. Two kinds of fiber reinforced composite laminated shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The numerical results show that the buckling loads as well as postbuckling strength of the shell can be increased as a result of functionally graded fiber reinforcements. The results reveal that the effect of functionally graded fiber reinforcements on the buckling loads and postbuckling strength of shell with polymer matrix is more pronounced compared to the shell with metal matrix in the case of axial compression. In contrast, in the case of external pressure, the functionally graded fiber reinforcements may have a significant effect on the buckling pressure and postbuckling strength of the shell with metal matrix.  相似文献   

18.
Thermoelastic analysis of a functionally graded rotating disk   总被引:2,自引:0,他引:2  
A semi-analytical thermoelasticity solution for hollow and solid rotating axisymmetric disks made of functionally graded materials is presented. The radial domain is divided into some virtual sub-domains in which the power-law distribution is used for the thermomechanical properties of the constituent components. Imposing the necessary continuity conditions between adjacent sub-domains, together with the global boundary conditions, a set of linear algebraic equations are obtained. Solution of the linear algebraic equations yields the thermoelastic responses for each sub-domain as exponential functions of the radial coordinate. Some results for the stress, strain and displacement components along the radius are presented due to centrifugal force and thermal loading. Results obtained within this solution are compared with those of a finite element analysis in the literature. Based on the results, it is shown that the property gradation correlates with thermomechanical responses of FG disks.  相似文献   

19.
Three-dimensional thermomechanical buckling analysis is investigated for functionally graded composite structures that composed of ceramic, functionally graded material (FGM), and metal layers. Material properties are assumed to be temperature dependent, and in FGM layer, they are varied continuously in the thickness direction according to a simple power law distribution in terms of the ceramic and metal volume fractions. The finite element model is adopted by using an 18-node solid element to analyze more accurately the variation of material properties and temperature field in the thickness direction. Temperature at each node is obtained by solving the thermomechanical equations. For a time discretization, Crank–Nicolson method is used. In numerical results, the thermal buckling behavior of FGM composite structures due to FGM thickness ratios, volume fraction distributions, and system geometric parameters are analyzed.  相似文献   

20.
This paper presents an analytical approach to investigate the nonlinear static and dynamic unsymmetrical responses of functionally graded shallow spherical shells under external pressure incorporating the effects of temperature. Governing equations for thin FGM spherical shells are derived by using the classical shell theory taking into account von Karman–Donnell geometrical nonlinearity. Approximate solutions are assumed and Galerkin procedure is applied to determine explicit expressions of static critical buckling loads of the shells. For the dynamical response, motion equations are numerically solved by using Runge–Kutta method and the criterion suggested by Budiansky–Roth. A detailed analysis is carried out to show the effects of material and geometrical parameters, boundary conditions and temperature on the stability and dynamical characteristics of FGM shallow spherical shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号