首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The supersonic flutter analysis of simply supported FG cylindrical shell for different sets of in-plane boundary conditions is performed. The aeroelastic equations of motion are constructed using Love’s shell theory and von Karman–Donnell-type of kinematic nonlinearity coupled with linearized first-order potential (piston) theory. The material properties are assumed to be temperature-dependant and graded across the thickness of the shell according to a simple power law. The temperature distribution is assumed to vary in the thickness direction and is obtained by solving the steady-state heat conduction equation. The pre-stresses due to the thermal and mechanical loadings are obtained by exact solution of the equilibrium equations. The Galerkin method is used to solve the aeroelastic equations of motion employing appropriate displacement functions. The effects of internal pressure and temperature rise on the flutter boundaries of the simply supported FG cylinder with different values of power-law index are investigated.  相似文献   

2.
The nonlinear flutters of a truncated conical shell, which is subjected to aerodynamic pressure and aerodynamic heating, are researched. Material properties with gradient features along the radial direction depend on the temperature. The supersonic aerodynamic force is obtained by applying the first-order piston theory, including the correction factor for curvature. The temperature in the external surface of the functionally graded material truncated conical shell rises as a result of viscous aerodynamic heating, and the temperature distribution along the thickness can be described by polynomial series. Hamilton's principle is utilized to obtain the nonlinear partial differential equilibrium equation of the system. Using Galerkin's method, a high-dimensional nonlinear system can be derived. Without considering the parts of nonlinear terms and the external forcing excitation, the flutter boundaries are obtained by solving the eigenvalues problem. The influences of ratios of top radius to thickness, semi-vertex angle, and volume fraction index on nonlinear dynamic characteristics of functionally graded material truncated conical shell are studied in detail by the fourth-order Runge–Kutta algorithm.  相似文献   

3.
The article is concerned with the analysis of panel flutter of heated circular clamped cylindrical shells made of functionally graded (FG) material, which are subject to a simultaneous action of the external supersonic gas flow and the internal flow of ideal compressible fluid. The effective properties of the material change throughout the thickness of the shell according to a power law and depend on temperature. The aerodynamic pressure is calculated based on the quasi-static aerodynamic theory. The behavior of the fluid is described in the framework of the potential theory. A mathematical formulation of the dynamic problem for elastic structure is developed based on the classical theory of shells and the principle of virtual displacements. Based on the results of numerical simulation the influence of different consistencies of the examined FG materials, thermal load, and internal flow velocity on the boundary of aeroelastic stability is analyzed.  相似文献   

4.
This paper presents a theoretical approach to solve vibration problems of functionally graded (FG) truncated conical shells under mixed boundary conditions. The material properties of FG shell are assumed to vary continuously through the thickness of the conical shell. The fundamental relations, motion and strain compatibility equations of FG truncated conical shells are derived by means of the Airy stress function method. Two cases of mixed boundary conditions are investigated. The basic equations are solved by using Galerkin method and fundamental cyclic frequencies of FG truncated conical shells are obtained. The results are compared and validated with the results available in the literature. The detailed parametric studies are carried out to investigate the influences of radius-to-thickness ratio, lengths-to-radius ratio, material composition and mixed boundary conditions on the fundamental cyclic frequencies of truncated conical shells.  相似文献   

5.
Geometrically nonlinear vibrations of functionally graded (FG) doubly curved shells subjected to thermal variations and harmonic excitation are investigated via multi-modal energy approach. Two different nonlinear higher-order shear deformation theories are considered and it is assumed that the shell is simply supported with movable edges. Using Lagrange equations of motion, the energy functional is reduced to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities which is truncated based on solution convergence. A pseudo-arclength continuation and collocation scheme is employed to obtain numerical solutions for shells subjected to static and harmonic loads. The effects of FGM power law index, thickness ratio and temperature variations on the frequency–amplitude nonlinear response are fully discussed and it is revealed that, for relatively thick and deep shells, the Amabili–Reddy theory which retains all the nonlinear terms in the in-plane displacements gives different and more accurate results.  相似文献   

6.
The free vibration analysis of rotating functionally graded (FG) cylindrical shells subjected to thermal environment is investigated based on the first order shear deformation theory (FSDT) of shells. The formulation includes the centrifugal and Coriolis forces due to rotation of the shell. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The initial thermo-mechanical stresses are obtained by solving the thermoelastic equilibrium equations. The equations of motion and the related boundary conditions are derived using Hamilton’s principle. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to discretize the thermoelastic equilibrium equations and the equations of motion. The convergence behavior of the method is demonstrated and comparison studies with the available solutions in the literature are performed. Finally, the effects of angular velocity, Coriolis acceleration, temperature dependence of material properties, material property graded index and geometrical parameters on the frequency parameters of the FG cylindrical shells with different boundary conditions are investigated.  相似文献   

7.
Based on the first-order shear deformation theory, the free vibration of the functionally graded (FG) truncated conical shells is analyzed. The truncated conical shell materials are assumed to be isotropic and inhomogeneous in the longitudinal direction. The two-constituent FG shell consists of ceramic and metal. These constituents are graded through the length, from one end of the shell to the other end. Using Hamilton's principle the derived governing equations are solved using differential quadrature method. Fast rate of convergence of this method is tested and its advantages over other existing solver methods are observed. The primary results of this study were obtained for four different end boundary conditions, and for some special cases, acquired results were compared with those available in the literature. Furthermore, effects of geometrical parameters, material graded power index, and boundary conditions on the natural frequencies of the FG truncated conical shell are carried out.  相似文献   

8.
In this paper, the aeroelastic behavior of homogeneous and functionally graded two- and three-dimensional flat plates is studied under supersonic airflow. The effects of coupled modeling of the aerodynamic heating with flight conditions and the thermal degradation of the plate are investigated, too. The von-Karman nonlinear strains, piston theory and a combination of simple rule of mixtures and the Mori–Tanaka scheme are used to model the structure, aerodynamic and material, respectively. The derived equations of motion are solved using Galerkin’s procedure along with the Runge–Kutta numerical technique. Finally, some examples are solved using the developed program and some conclusions are made. It is shown that under real flight conditions and using coupled model, the aerodynamic heating is very severe and the type of instability is divergence.  相似文献   

9.
This paper deals with the linear and nonlinear vibrations of a truncated conical shell; both internal and external surfaces are covered by functionally graded coatings (FGCs). The theoretical formulation is based on the von Karman–Donnell-type nonlinear kinematics. The material properties of FGCs are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The fundamental relations, the modified Donnell-type nonlinear motion, and compatibility equations of the truncated conical shell with FGCs are derived. The basic equations are reduced to the ordinary differential equation depending on time with geometric nonlinearity using the Superposition and Galerkin methods. By applying the homotopy perturbation method to the foregoing equation, the relation between nonlinear frequency parameters with the dimensionless amplitude of a truncated conical shell with FGCs is obtained. Parametric studies are performed to illustrate the effect of different values of thickness and material composition of the FGCs on the frequency-amplitude relationships. The validity of the present solution is demonstrated by comparison with solutions available in the literature.  相似文献   

10.
The equilibrium equations of the first-order nonlinear von Karman theory for FG circular plates under asymmetric transverse loading and heat conduction through the plate thickness are reformulated into those describing the interior and edge-zone problems of the plate. A two parameter perturbation technique, in conjunction with Fourier series method is used to obtain analytical solutions for nonlinear behavior of functionally graded circular plates with various clamped and simply-supported boundary conditions. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. The results are verified with known results in the literature. The load–deflection curves for different loadings, boundary conditions, and material constant in a solid circular plate are studied and discussed. It is shown that the behavior of FG plates with clamped or simply-supported boundary conditions are completely different. Under thermo-mechanical loading, snap-through buckling behavior is observed in simply-supported FG plates which are immovable in radial direction. Moreover, it is found that linear theory is inadequate for analyzing FG and also homogenous plates with immovable boundary supports in radial direction and subjected to thermal loading, even for deflections that are normally considered small.  相似文献   

11.
This paper examines the stability of thin three-layered truncated conical shells containing a functionally graded (FG) layer subjected to non-uniform lateral pressure varying with the longitudinal coordinate. The material properties of the functionally graded layer are assumed to vary continuously through the thickness of the shell, and the variation of properties follows an arbitrary distribution in terms of the volume fractions of the constituents. Further, the fundamental relations for stability and compatibility equations of three-layered truncated conical shells containing an FGM layer have been obtained. These equations, ascertained via Galerkin’s method, have been transformed into a pair of time-dependent differential equations. Then, critical non-uniform lateral pressure has been conclusively obtained. This paper is the result of a detailed parametric study conducted to determine the influences of thickness variations in the FG layer, radius-to-thickness ratio, lengths-to-radius ratio, and the material composition and material profile index on the critical parameters of three-layered, truncated, conical shells. Finally, the results will be validated through the comparison of obtained values with those in the existing literature.  相似文献   

12.
The aim of present study is to investigate the vibration and stability of functionally graded (FG) conical shells under a compressive axial load using the shear deformation theory (SDT). The basic equations of shear deformable FG conical shells are derived using Donnell shell theory and solved using Galerkin's method. The novelty of this study is to achieve closed-form solutions for the dimensionless frequencies and critical axial loads for freely-supported FG truncated conical shells on the basis of the SDT. Parametric studies are made to investigate effects of shear stresses, compositional profiles and conical shell characteristics on the critical parameters. Some comparisons with the various studies have been performed in order to show the accuracy of the present study.  相似文献   

13.
A computational method to perform transonic aeroelastic and aeroservoelastic calculations in the time domain is presented, and used to predict stability (flutter) boundaries of 2‐D wing sections. The aerodynamic model is a cell‐centred finite‐volume unsteady Euler solver, which uses an efficient implicit time‐stepping scheme and structured moving grids. The aerodynamic equations are coupled with the structural equations of motion, which are derived from a typical wing section model. A control law is implemented within the aeroelastic solver to investigate active means of flutter suppression via control surface motion. Comparisons of open‐ and closed‐loop calculations show that the control law can successfully suppress the flutter and results in an increase of up to 19 per cent in the allowable speed index. The effect of structural non‐linearity, in the form of hinge axis backlash is also investigated. The effect is found to be strongly destabilizing, but the control law is shown to still alleviate the destabilizing effect. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
This paper deals with the large amplitude vibration of nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation in thermal environments. The SWCNTs are assumed aligned, straight and a uniform layout. Two kinds of carbon nanotube-reinforced composite (CNTRC) plates, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRC plates are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The motion equations are based on a higher-order shear deformation plate theory that includes plate-foundation interaction. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. The equations of motion are solved by an improved perturbation technique to determine nonlinear frequencies of CNTRC plates. Numerical results reveal that the natural frequencies as well as the nonlinear to linear frequency ratios are increased by increasing the CNT volume fraction. The results also show that the natural frequencies are reduced but the nonlinear to linear frequency ratios are increased by increasing the temperature rise or by decreasing the foundation stiffness. The results confirm that a functionally graded reinforcement has a significant effect on the nonlinear vibration characteristics of CNTRC plates.  相似文献   

15.
In this study, the thermal post-buckling behaviors and linear flutter analysis of structurally damped functionally graded (FG) panels under a supersonic airflow are investigated. The material properties are assumed to be temperature-dependent and vary in the thickness direction of the panel. First-order shear-deformation theory (FSDT) is applied to model the panel, and the von Karman strain–displacement relations are adopted to consider the geometric nonlinearity. In addition, the damping is modeled as the Rayleigh damping, and first-order piston theory is applied for the supersonic aerodynamic load. Results are obtained for the thermal post-buckling behavior, and linear flutter analysis of FG panels with a damping effect is performed to search for the origin of the flutter. The numerical data are validated through a comparison with the previous works, and the effects of structural damping are discussed in detail for various cases.  相似文献   

16.
Aero-thermoelastic stability of functionally graded plates   总被引:1,自引:0,他引:1  
In this paper, an analytical investigation intended to determine the aero-thermoelastic stability margins of functionally graded panels is carried out. For this purpose, piston theory aerodynamics has been employed to model quasi-steady aerodynamic loading. The material properties of the plate are assumed to be graded continuously across the panel thickness. A simple power-law and the Mori–Tanaka scheme are used for estimating the effective material properties such as temperature-dependent thermoelastic properties. The effects of compressive in-plane loads and both uniform and through the thickness non-linear temperature distributions are also considered. Hamilton’s principle is used to determine the coupled partial differential equations of motion. Using Galerkin’s method, the derived equations are transformed into a set of coupled ordinary differential equations, and then solved by numerical time integration. Some examples comparing the stability margins of functionally graded panels with those of plates made of pure metals and pure ceramics are presented. It is shown that the use of functionally graded materials can yield an increase or decrease of the aeroelastic stability in the supersonic flow for different regions.  相似文献   

17.
范晨光  杨翊仁  鲁丽 《振动与冲击》2010,29(12):200-205
引入微分求积法(Differential Quadrature Method,简称DQM)对截锥壳气动弹性方程离散,采用一阶活塞理论气动力,运用特征值分析方法求解系统的颤振临界动压。研究了半顶角、径厚比、长径比等几何参数对颤振临界动压的影响。结果表明,DQM求解截锥壳气动弹性方程具有良好的精度和计算效率,结构产生1阶~2阶耦合型颤振的最低临界动压对应的周向波数较大,并因几何参数而异;颤振临界动压参数随半顶角的增大而减小,随着径厚比的增大而增大,随长径比的增大而减小。  相似文献   

18.
In this study, the instability of delaminated cross-ply thin laminated cylindrical shells and panels when subjected to supersonic flow parallel to its length edge is investigated. The delamination is parallel to the shell reference and it extends along the entire length of the cylindrical shell. The Love’s shell theory and Von-Karman–Donnell type of kinematic relations along with first-order potential theory have been employed to construct the aeroelastic equations of motion. The effects of several parameters such as length to radius ratio, delamination position, size and thickness on the critical values are discussed in the details. The results indicate that the presence of delamination reduced the overall stiffness of the structure and thereby decreases the flutter critical boundaries.  相似文献   

19.
Dynamic buckling of functionally graded materials truncated conical shells subjected to normal impact loads is discussed in this paper. In the analysis, the material properties of functionally graded materials shells are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Geometrically nonlinear large deformation and the initial imperfections are taken into account. Galerkin procedure and Runge–Kutta integration scheme are used to solve nonlinear governing equations numerically. From the characteristics of dynamic response obtain critical loads of the shell according to B-R criterion. From the research results it can be found that gradient properties of the materials have significant effects on the critical buckling loads of FGM shells.  相似文献   

20.
In this article, the thermal effects on buckling and free vibrational characteristics of functionally graded (FG) size-dependent nanobeams subjected to various types of thermal loading are investigated by presenting a Navier-type solution for the first time. Temperature-dependent material properties of FG nanobeams vary continuously along the thickness according to the power-law form. The small-scale effect is taken into consideration based on Eringen's nonlocal elasticity theory. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying an analytical solution. It is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号