首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米化对Mg2Ni/MmNi5-x(CoAlMn)x复合储氢合金电极特性的影响   总被引:11,自引:0,他引:11  
用高能球磨方法制备了Mg2Ni/MmNi5-x(CoAlMn) x复合储氢合金,并用化学镀对其进行包覆处理,X射线衍射(XRD)和扫描电镜(SEM)别证实复合合金具有团粒结构的特征,并在适当的球磨条件下达到纳米复合,本研究有模拟电池法分析了不同晶粒尺寸的单相和复合合金的电极特性,对于单相Mg2Ni和MmNi5-x(CoAlMn)x合金,球磨分别导致其放电容量增加加和降低,对纳米复合储氢合金而言,其放电容量并不是其组成合金的容理的简单加和,而是存在复合增强效应,当复合合金中组元相的晶尺寸小于100nm时,具有明显的复合增强效应。  相似文献   

2.
Mg2Ni型合金与AB5型稀土储氢合金纳米复合对电极性能的影响   总被引:10,自引:1,他引:10  
对由两步法 (由机械合金化和烧结两个步骤组成 )制备的Mg2 Ni型储氢合金进行高能球磨处理 ,然后对球磨后的Mg2 Ni合金粉进行化学镀及与AB5型合金进行复合等处理。利用X射线衍射 (XRD)、扫描电镜(SEM)分析了经过处理的材料的微观结构 ,并用模拟电池法测定了该材料的电极性能 ,并讨论了化学镀和与AB5型储氢合金复合等因素对Mg2 Ni合金电极特性的影响  相似文献   

3.
为了改善Mg2Ni型合金气态及电化学贮氢动力学性能,用Cu部分替代合金中的Ni,用快淬技术制备Mg2Ni1-xCux(x=0,0.1,0.2,0.3,0.4)合金,用XRD、SEM、HRTEM分析铸态及快淬态合金的微观结构;用自动控制的Sieverts设备测试合金的气态贮氢动力学性能,用程控电池测试仪测试合金的电化学贮氢动力学.结果表明,所有快淬态合金均具有纳米晶结构,无非晶相形成.Cu替代Ni不改变合金的主相Mg2Ni,但使合金的晶粒显著细化.快淬处理及Cu替代均显著地提高合金的气态及电化学贮氢动力学性能.当淬速从0m/s(铸态被定义为淬速0 m/s)增加到30 m/s时,Mg2Ni0.8Cu0.3合金在5 min内的吸氢饱和率从57.2%增加到92.87%,20 min的放氢率从21.6%增加到49.6%,高倍率放电能力(HRD)从40.6%增加到73.1%,氢扩散系数(D)从1.02×10-11 cm2/s增加到4.08×10 -11 cm2/s,极限电流密度(IL)从113.0 mA/g增加到715.3 mA/g.  相似文献   

4.
为了改善Mg2Ni型贮氢合金的电化学贮氢性能,以Co部分替代合金中的Ni,用快淬工艺制备Mg2Ni型Mg2Ni1-xCox(x=0,0.1,0.2,0.3,0.4)合金,获得长度连续、厚度约为30μm、宽度约为25 mm的快淬合金薄带。并用XRD、SEM、HRTEM分析快淬态合金薄带的微观结构;用DSC研究快淬薄带的热稳定性;用程控电池测试仪测定合金薄带的电化学贮氢性能;探索Co替代Ni对快淬Mg2Ni型合金结构及电化学贮氢性能的影响。结果表明:在快淬无Co合金中没有发现非晶相,但快淬含Co合金中存在明显的非晶结构,证明Co替代Ni提高了Mg2Ni型合金的非晶形成能力。Co替代Ni使快淬态合金的热稳定性略有提高,显著地改善了合金的电化学贮氢性能,包括放电容量、电化学循环稳定性以及高倍率放电性能,这主要归因于Co替代Ni导致结构的变化以及非晶形成能力的提高。  相似文献   

5.
1 INTRODUCTIONDuringthelastdecade ,thedemandforthenickel/metal hydride (Ni/MH )secondarybatterieshasbeengrowingrapidlybecauseoftheirhighenergydensity ,highHRD ,longcharge dischargecyclelifeandfriendlyenvi ronmentalproperties[14 ] .Hydrogenstoragealloys ,astheneg…  相似文献   

6.
用快淬工艺制备了Mg2Ni型合金,其名义成分为Mg2Ni1-xCox(x=0,0.1,0.2,0.3,0.4)。以XRD、SEM、TEM分析了铸态及快淬合金的结构。用程控模拟电池测试仪测试了合金的电化学贮氢动力学。用电位跃迁法计算了氢在合金中的扩散系数。用电化学工作站测试了合金的电化学交流阻抗谱(EIS)和Tafel极化曲线。结果表明,快淬态无Co合金具有典型的纳米晶结构,而Co含量为0.4的快淬态合金具有纳米晶/非晶结构,表明Co替代Ni可以提高Mg2Ni型合金的非晶形成能力,且快淬态合金的非晶化程度随Co替代量的增加而增加。Co替代Ni显著地提高了合金电化学贮氢动力学。当Co含量从0增加到0.4时,淬速为25m/s的快淬态合金的高倍率放电能力(HRD)从65.3%增加到75.3%,氢扩撒系数(D)从2.22cm2/s增加到3.34cm2/s,极限电流密度(IL)从247.8mA/g增加到712.4mA/g。  相似文献   

7.
采用机械球磨法制备Mg17Al12合金,系统研究了球磨时间对Mg17Al12形成过程的影响;并以球磨12 h的Mg17Al12合金为基体,添加5%、10%(质量分数)的Ni、Cu单质,通过机械球磨对合金进行表面复相改性。采用P-C-T测试仪测定合金的储氢性能,研究添加不同质量分数的单质对Mg17Al12合金储氢性能的影响。结果表明:球磨12 h Mg17Al12的吸氢速率较慢,吸氢时间较长,需在1400 min达到最大吸氢量为4.1%(质量分数),接近其理论吸氢量4.4%,Mg17Al12的吸放氢过程是可逆的。Cu对Mg17Al12进行表面复相改性,可以显著改善其吸氢动力学性能,添加5%Cu和10%Cu的合金在623 K,240 min的吸氢量分别为4.07%和3.9%。经过Cu和Ni复相改性后的Mg17Al12具有较好的放氢性能,添加5%Cu合金在553 K放出3%的氢气。Ni对Mg17Al12进行表面复相改性,对其性能有一定的提高,但是和Cu相比,并不明显  相似文献   

8.
氢化燃烧法合成Mg2Ni的贮氢性能   总被引:2,自引:0,他引:2  
用氢化燃烧法合成了Mg2 Ni,PCT实验结果说明了合成的镁基贮氢合金具有很高的活性和高贮氢量 ,5 5 3K时达到 3.40 %。对Mg Ni系的PCT结果作了处理 ,得出温度和氢平衡压的关系式 :吸氢时lg(p/ 0 .1MPa)=- 34 6 9/T 6 .6 39;放氢时lg(p/ 0 .1MPa) =- 35 5 8/T 6 .6 12。用XRD方法进行了物相分析 ,表明存在在Mg2 Ni的氢化物  相似文献   

9.
本文综述了熔炼法、机械合金化法、烧结法、扩散法、氢化燃烧合成法、表面处理法等制备Mg2Ni合金的基本原理和主要工艺。介绍了扩散法和球磨法等制备技术的联用,总结并讨论了这些合金制备技术制取的合金的充放氢性能和电化学性能及其对合金性能的影响。较先进的机械合金化法制备Mg2Ni系贮氢合金复合材料是比较理想的途径。  相似文献   

10.
掺Cr纳米晶Mg_2Ni合金的气态储氢性能   总被引:5,自引:0,他引:5  
纳米晶Mg2 Ni1-xCrx(x =0 ,0 .1,0 .2 ,0 .3)合金由纯Mg、Ni、Cr粉在 5 0 0℃经 3h烧结后机械球磨而成。在 2 10℃吸氢、2 5 0℃放氢的条件下 ,添加Cr后合金的最大吸放氢量明显提高 ;纳米Mg2 Ni0 .8Cr0 .2 合金的气态储氢量和吸氢动力学性能较好 ,第一次放氢量就达到 3.0 % ,并且循环稳定性良好 ,吸氢后生成Mg2 NiH4 、Mg2 NiH0 .2 4 相。纳米Mg2 Ni0 .7Cr0 .3 合金的放氢量在不经过活化的条件下便达到最大值 ,然而循环稳定性差 ,这是由于循环过程中有MgH2 生成而造成的  相似文献   

11.
采用燃烧合成法合成了三元镁基储氢合金Mg2-xAlxNi(x=0.1~0.5),XRD衍射研究表明合成产物中出现了具有Ti2Ni型立方结构的新相,SEM结果显示合金表面存在大量缺陷.Al元素部分替代Mg对Mg2Ni电化学性能影响的研究表明:Mg2-xAlxNi合金的电化学容量和循环寿命明显优于无Al的Mg2Ni,这归因于新相Mg3AlNi2的结构特点及形成的Al2O3保护层.此外,对合成产物的进一步的机械研磨有助于改进合金的活化行为及电极容量,但无助于循环能力的提高.  相似文献   

12.
为了提高Mg2Ni基合金的储氢动力学性能,通过熔炼方法分别添加金属元素Nd,Zn和Ti来防止镁的氧化和蒸发,将Mg2Ni基合金在有覆盖剂保护的电阻炉中进行熔炼。借助XRD 和 SEM/EDS研究了铸态合金的相组成和微观组织。采用定容法在Sievert’s型PCT测试仪上测试了合金的氢化动力学性能。Nd、Zn和Ti的添加导致了微量相Mg6Ni和Ni3Ti的生成。Nd和Zn溶解在Mg2Ni基合金的α-Mg、Mg2Ni和MgNi2相中。添加Nd元素后,合金的首次吸氢量高于Mg2Ni的,达到2.86%(质量分数)。Mg2Ni基合金的吸氢动力学性能和活化性能均有所提高。在前3次吸放氢循环过程中,添加Zn和Ti的合金吸氢量和吸氢动力学性能均得到提高。采用Hirooka动力学模型分析了合金的氢化动力学性能及反应机制。  相似文献   

13.
Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10–xCux(x=0,1,2,3,4,mass fraction,%) were synthesized by rapid quenching technique.The microstructures of the as-cast and quenched alloys were characterized by XRD,SEM and HRTEM.The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system.The hydriding and dehydriding kinetics of the alloys were measured using an automatically controlled Sieverts apparatus.The results show that all the as-quenched alloys hold the typical nanocrystalline structure and the rapid quenching does not change the major phase Mg2Ni.The rapid quenching significantly improves the electrochemical hydrogen storage capacity of the alloys,whereas it slightly impairs the cycling stability of the alloys.Additionally,the hydrogen absorption and desorption capacities of the alloys significantly increase with rising quenching rate.  相似文献   

14.
采用第一性原理赝势平面波方法,研究元素Al和Ti掺杂对Mg2Ni储氢合金相结构稳定性的影响及其微观机理.结果显示:在掺杂浓度x=0~0.5范围内,所形成的Mg2Ni型Mg2-xMxNi(M=Al,Ti)固溶体合金的相结构稳定性随Al掺杂浓度的增大而增强,随Ti掺杂浓度的增大而减弱,且Mg2-xMxNi(M=Al,Ti)固溶体合金相对于立方结构的Mg3MNi2(M=Al,Ti)化合物呈现热力学不稳定性,极易分解成由立方结构Mg3MNi2(M=Al,Ti)和六方结构Mg2Ni组成的复合相,计算结果与实验结果吻合.电子结构分析表明,Al、Ti掺杂Mg2Ni储氢合金的相结构稳定性与体系在低能级区的成键电子数密切相关.  相似文献   

15.
The hydrogen storage properties of the nanocomposite MggsNi3(MnO2)2(maas fraction, % ) were studied.The temperature changes in hydriding/dehydriding process were investigated. The nanocomposite was fabricated by ball milling process of mixed demental Mg, Ni and oxide maganese MnCh under hydrogen pressure (approximately 0.6 MPa).The hydrogen absorption and desorption properties of the samples milled for various times were investigated. A remarkable enhancement of hydrogen absorption kinetics and low operational desorption temperature have been.found after the sample milled for over 57h. For example, this nanocomposite can absorb hydrogen more than 6.0% (mass fraction) in 60s at 200℃ under 2.0 MPa, and desorption capacity also exceeds 6.0 % (mass fraction) in 400 s at 310℃ under 0.1 MPa.The storage properties of samp1es milled for various times were studied and the kinetics of the samples were analyzed.  相似文献   

16.
新型储氢合金电极Ti_3Ni_2的电化学性能   总被引:1,自引:1,他引:0  
研究了新型储氢合金电极 Ti3Ni2 的电化学性能。实验结果表明 :Ti3Ni2 合金电极的最大放电容量达到384.4m Ah/ g(35 3K) ,相当于 Ti3Ni2 H3.7;在 2 78K,最大容量为 145 .5 m Ah/ g,相当于 Ti3Ni2 H1 .47。高温条件下(35 3K)放电曲线有 2个平台 ,在温度比较低时 ,放电曲线只有 1个平台 ;与 Ml(Ni Co Mn A1) 5 合金相比 ,Ti3Ni2 合金电极的动力学性能不好。此外 ,温度对 Ti3Ni2 合金电极的电化学性能影响明显。在温度比较高的条件下 ,合金的放电容量、动力学特性、荷电保持能力均有大幅改善。  相似文献   

17.
用快淬工艺制备了纳米晶和非晶Mg2Ni型Mg2 -xLaxNi (x=0,0.2,0.4,0.6)贮氢电极合金,获得长度连续,厚度约为30μm,宽度约为25 mm的薄带.用XRD、SEM和HRTEM分析了快淬合金薄带的微观结构,测试了合金薄带的电化学性能及电化学交流阻抗谱(EIS).快淬无La合金具有典型的纳米晶结构,...  相似文献   

18.
机械合金化对Mg_2Ni相形成的影响   总被引:2,自引:0,他引:2  
用两步法 (即由机械合金化和压制烧结两个步骤组成 )制备了Mg2 Ni合金。实验证明 :混合粉经机械合金化后 ,晶粒细化 ,增加了固态扩散的能力 ,有利于固相反应进行 ,使Mg2 Ni产率明显提高。不同温度烧结处理的结果表明 :烧结温度是影响Mg2 Ni相形成的重要因素 ,烧结温度达到 843K ,Mg Ni粉基本能完全转变为Mg2 Ni相。  相似文献   

19.
钒基固溶体贮氢合金在KOH电解质溶液中容易腐蚀,导致合金的电化学循环稳定性差,限制了钒基固溶体贮氢合金在Ni/MH电池中的应用.通过测试贮氢合金V3TiNi0.56Mx(M=Al、Cr,x=0.1、0.3)在KOH溶液浸泡过程中组织结构变化和腐蚀电位、交流阻抗谱等,研究了钒基固溶体贮氢合金V3TiNi0.56Mx的耐碱液腐蚀性能.结果表明:钒基固溶体贮氢合金在碱液中的腐蚀原因是作为导电集流体的TiNi第二相在KOH溶液中的不断溶解;在合金V3TiNi0.56中添加Al和Cr元素,可阻止合金中分布于晶界的TiNi第二相的溶解,使合金的腐蚀电位提高,从而提高钒基固溶体贮氢合金的酎碱液腐蚀能力.  相似文献   

20.
Mg2−xSnxNi (x = 0, 0.1, 0.3) alloys were synthesized by reactive ball milling under protective Ar atmosphere and liquid n-heptane. The microstructure and the morphology of the powders were determined by X-ray diffraction and scanning electron microscopy. The as-milled alloys consist of Mg2Ni nanocrystals with an average grain size in the range 3–7 nm, depending on the alloy composition. Sn containing phases were not detected even in the Sn-rich alloy. Obviously, Sn is dissolved in the Mg2Ni intermetallic compound. Gas phase sorption of hydrogen was not observed in the alloys containing Sn (Mg2−xSnxNi; x = 0.1, 0.3). It was suggested that Sn impedes the process of hydrogen molecules decomposition. The as-milled alloys absorbed reversibly hydrogen electrochemically. Mg2Ni alloy showed the highest discharge capacity of 300 mAh/g. The capacity of Mg1.9Sn0.1Ni and Mg1.7Sn0.3Ni was about 260 mAh/g. It was found that Sn improved the cycle life of the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号