首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that a variety of mammalian cell types, including macrophages, contain small amounts of redox-active iron in their lysosomes. Increases in the level of this iron pool predispose the cell to oxidative stress. Limiting the availability of intralysosomal redox-active iron could therefore represent potential cytoprotection for cells under oxidative stress. In the present study we have shown that an initial 6 h exposure of J774 macrophages to 30 microM iron, added to the culture medium as FeCl3, increased the lysosomal iron content and their sensitivity to H2O2-induced (0.25 mM for 30 min) oxidative stress. Over time (24-72 h), however, the cells were desensitized to the cytotoxic effects of H2O2; most likely as a consequence of both lysosomal iron exocytosis and of ferritin synthesis (demonstrated by atomic absorption spectrophotometry, autometallography, and immunohistochemistry). When the cells were exposed to a second dose of iron, their lysosomal content of iron increased again but the cells became no further sensitized to the cytotoxic effects of H2O2. Using the lysosomotropic weak base, acridine orange, we demonstrated that after the second exposure to iron and H2O2, lysosomes remained intact and were no different from control cells which were exposed to H2O2 but not iron. These data suggest that the initial induction of ferritin synthesis leads to enrichment of lysosomes with ferritin via autophagocytosis. This limits the redox-availability of intralysosomal iron and, in turn, decreases the cells' sensitivity to oxidative stress. These in vitro observations could also explain why cells under pathological conditions, such as haemochromatosis, are apparently able to withstand high iron concentrations for some time in vivo.  相似文献   

2.
The prevailing opinion on lysosomal endurance is that, as long as the cells are still alive, these organelles are generally quite stable and, thus, do not induce cell damage by leaking their numerous powerful hydrolytic enzymes to the cytosol. We suggest that this opinion is basically wrong and consider that many lysosomes are quite vulnerable, especially to oxidative stress. Moreover, we suggest that cellular degeneration, including apoptosis as well as necrosis, follows upon lysosomal disruption. We have found differing stability of lysosomal membranes to oxidative stress, not only among different cell types, but also between cells of the same type and between lysosomes of individual cells. We suggest that cellular resistance to oxidative stress is mainly a function of three parameters: (i) the capacity to degrade hydrogen peroxide before it reaches, and may diffuse into, the acidic vacuolar compartment; (ii) the resistance to reactive oxygen species of lysosomal membranes; and (iii) the intralysosomal amounts of redox-active, low molecular weight iron. Iron-catalysed intralysosomal reactions, if pronounced enough, result in peroxidation and destabilization of the lysosomal membrane. Owing to differences in the cellular synthesis of hydrogen peroxide-degrading enzymes, degree of autophagocytotic degradation of iron-containing metalloproteins, lysosomal localization within the cytoplasm and intralysosomal iron chelation, the above three parameters may vary between both different and similar cells and between lysosomes of individual cells as well, explaining their observed variability with respect to resistance against oxidative stress.  相似文献   

3.
Lipofuscin (age pigment) is a brown-yellow, electron-dense, autofluorescent material that accumulates progressively over time in lysosomes of postmitotic cells, such as neurons and cardiac myocytes. The exact mechanisms behind this accumulation are still unclear. This review outlines the present knowledge of age pigment formation, and considers possible mechanisms responsible for the increase of lipofuscin with age. Numerous studies indicate that the formation of lipofuscin is due to the oxidative alteration of macromolecules by oxygen-derived free radicals generated in reactions catalyzed by redox-active iron of low molecular weight. Two principal explanations for the increase of lipofuscin with age have been suggested. The first one is based on the notion that lipofuscin is not totally eliminated (either by degradation or exocytosis) even at young age, and, thus, accumulates in postmitotic cells as a function of time. Since oxidative reactions are obligatory for life, they would act as age-independent enhancers of lipofuscin accumulation, as well as of many other manifestations of senescence. The second explanation is that the increase of lipofuscin is an effect of aging, caused by an age-related enhancement of autophagocytosis, a decline in intralysosomal degradation, and/or a decrease in exocytosis.  相似文献   

4.
The mechanisms involved in the accumulation of ceroid/lipofuscin within non-dividing cells are not totally understood. Oxidative stress, as well as diminished activity of lysosomal proteolytic enzymes, are known to induce ceroid/lipofuscin accumulation in a variety of cell types. In order to clarify the roles of oxidative stress and lysosomal proteolysis in ceroidogenesis/lipofuscinogenesis, and to study the fate of already formed ceroid/lipofuscin, confluent cultures of AG-1518 human fibroblasts were exposed to oxidative stress (40% ambient oxygen) and/or treated with the thiol protease inhibitor leupeptin for 2 weeks. Both oxidative stress and protease inhibition caused accumulation of ceroid/lipofuscin per se (estimated by fluorescent, confocal and electron microscopy). The combined effect of these factors was, however, almost three times as large as the sum of their isolated effects. The pigment accumulated progressively as long as the oxidative stress and/or protease inhibition acted; was not eliminated after re-establishment of normal conditions; and decreased in amount after subsequent passage. The results suggest that (i) ceroid/lipofuscin forms within secondary lysosomes due to peroxidative damage of autophagocytosed material, and (ii) it is not substantially eliminated from non-dividing cells by degradation or exocytosis.  相似文献   

5.
Cysteine-stimulated oxidation of a rat liver lysosomal-mitochondrial fraction (LMF) was studied. The process would simulate oxidative stress-related events during the degradation of autophagocytosed material within secondary lysosomes, which may contribute to the formation of lipofuscin or age pigment. Millimolar concentration of cysteine was needed to stimulate LMF lipid peroxidation, measured as thiobarbituric acid reactive substances (TBARS). The amount of endogenous LMF iron was 545 micrograms/l and was enough to initiate peroxidation, probably through the reduction of ferric to ferrous iron by cysteine with induction of Fenton chemistry. Peroxidation could be completely inhibited by the addition of the iron chelator desferal or the antioxidant BHT. A substantial amount of the formed TBARS was associated with trichloroacetic acid (TCA) precipitable proteins. Elevated protein carbonyls was observed 1-2 h after the increase of TBARS. The tryptophan-tyrosine related protein autofluorescence (280/335 nm) decreased sharply during the first few hours of incubation. In contrast, a lipofuscin-type autofluorescence (345/430 nm) appeared only after a few days, suggesting that the latter fluorophore is not an immediate product of protein oxidation. The sequential formation of TBARS, protein carbonyls and lipofuscin-type autofluorescence as well as their dependence on iron and reducing agent add further support to the concept that lipofuscin forms in secondary lysosomes as a result of iron-catalyzed oxidative reactions involving autophagocytosed materials.  相似文献   

6.
In most eukaryotic cells, synthesis of the iron storage protein, ferritin is regulated by iron levels and redox conditions. Proper iron storage is important to protect against damaging iron-catalysed free radical reactions. Although iron-catalysed reactions are believed to contribute to oxidative damage and cataractogenesis, little is known about iron storage in the lens. In this study, ferritin concentration was measured in cultured canine lens epithelial cells. Baseline ferritin concentration ranged from 76-163 ng (mg protein)-1; cells cultured in low-iron media had significantly lower ferritin levels than cells cultured in iron-supplemented media. Addition of a large excess of iron as hemin resulted in an eight-fold increase in ferritin concentration. The iron chelator, Desferal, significantly decreased ferritin concentration. The reducing agent dithiothreitol decreased the hemin-induced increase in ferritin levels, but not baseline levels. In contrast, ascorbic acid induced a large increase in ferritin content. Other studies have shown that induction of ferritin synthesis can protect against oxidative damage. Regulation of ferritin levels may represent a mechanism by which the lens epithelium is protected from oxidative damage. In vivo, epithelial cells are normally exposed to much lower iron concentrations than the cultured lens epithelial cells in this study. However, in pathological circumstances, the iron content and redox state of the aqueous humor is dramatically altered and may affect the steady state levels of ferritin within the lens. This remains to be determined.  相似文献   

7.
Based on the unusually high and stage-dependent susceptibility of Plasmodia to oxidant stress it has been proposed that during parasite development, increasing levels of redox-active forms of iron are gradually released. The purpose of this study was to examine this proposal by using an assay monitoring the levels of available forms of iron for redox reactions. Ascorbate-driven and iron-mediated degradation of adventitious DNA served as the basis for this functional assay. Incubation of DNA with lysate from infected RBC caused massive degradation, which was dose, time- and parasite-stage dependent. In contrast, lysate from non-infected RBC did not induce DNA degradation. Likewise, lysate only from infected RBC enhanced the aerobic oxidation of ascorbate. These effects on both reaction, DNA degradation and ascorbate oxidation, could be reconstructed with hemin, instead of lysate. Also, chelators exerted similar effects on both reactions. The results suggest that increased levels of redox-active forms of iron are liberated during parasite development. We propose that hemin or hemin-like structures are the appropriate candidates which could catalyze oxidative stress and deregulate the delicate redox balance of the host-parasite system.  相似文献   

8.
Copper/zinc superoxide dismutase (CuZnSOD) catalyses the conversion of O2.- into H2O2. Constitutive overexpression of CuZnSOD in cells and animals creates an indigenous oxidative stress that predisposes them to added insults. In this study, we used transgenic CuZnSOD (Tg-CuZnSOD) mice with elevated levels of CuZnSOD to determine whether overexpression of CuZnSOD affected the susceptibility of these mice to plasmodium infection. Acute malaria is associated with oxidative stress, mediated by redox-active iron released from the infected RBC. Two independently derived Tg-CuZnSOD lines showed higher sensitivity than control mice to infection by Plasmodium berghei (P. berghei), reflected by an earlier onset and increased rate of mortality. Nevertheless, while Tg-CuZnSOD mice were more vulnerable than control mice, the levels of parasitemia were comparable in both strains. Moreover, treatment of infected red blood cells (RBC) with oxidative stress inducers, such as ascorbate or paraquat, reduced the viability of parasites equally in both transgenic and control RBC. This further confirms that increased CuZnSOD does not support plasmodia development. The data are consistent with the possibility that the combination of increased redox-active iron and elevated H2O2 in the plasmodium-infected Tg-CuZnSOD mice, led to an enhanced Fenton's reaction-mediated HO. production, and the resulting oxidative injury renders the transgenic mice more vulnerable to parasite infection.  相似文献   

9.
In many physiological studies dehydroascorbate (DHA) reductase is regarded as one of the chloroplast enzymes involved in the protection against oxidative stress. Here, evidence is presented that plant cells do not possess a specific DHA reductase. The DHA reductase activities measured in plant extracts are due to side reactions of proteins containing redox-active dicysteine sites. Native gel electrophoresis combined with specific activity staining revealed three different proteins with DHA reductase activity in leaf and chloroplast extracts. These proteins have been identified as thioredoxins and trypsin inhibitors (Kunitz type) by Western blot analysis. The essential regulatory functions of thioredoxins in chloroplast metabolism are strongly inhibited in the presence of as little as 50 microM DHA. Thus, the intracellular DHA concentration should be kept below 50 microM but not all proteins with DHA reductase activity are effective enough for this purpose. A specific DHA reductase is frequently demanded as part of the enzymatic equipment to avoid oxidative stress. We argue that this is not necessary because in chloroplasts DHA does not accumulate to any significant extent due to the high activities of monodehydroascorbate reductase and of reduced ferredoxin.  相似文献   

10.
We have previously shown, using qualitative approaches, that oligodendroglial precursors are more readily damaged by free radicals than are astrocytes. In the present investigation we quantified the oxidative stress experienced by the cells using oxidation of dichlorofluorescin diacetate to dichlorofluorescein as a measure of oxidative stress; furthermore, we have delineated the physiological bases of the difference in susceptibility to oxidative stress found between oligodendroglial precursors and astrocytes. We demonstrate that (a) oligodendroglial precursors under normal culture conditions are under six times as much oxidative stress as astrocytes, (b) oxidative stress experienced by oligodendroglial precursors increases sixfold when exposed to 140 mW/m2 of blue light, whereas astrocytic oxidative stress only doubles, (c) astrocytes have a three times higher concentration of GSH than oligodendroglial precursors, (d) oligodendroglial precursors have > 20 times higher iron content than do astrocytes, and (e) oxidative stress in oligodendroglial precursors can be prevented either by chelating intracellular free iron or by raising intracellular GSH levels to astrocytic values. We conclude that GSH plays a central role in preventing free radical-mediated damage in glia.  相似文献   

11.
Most lysosomal hydrolases are soluble enzymes. Lamp-II (lysosome-associated membrane protein-II) is a major constituent of the lysosomal membrane. We studied the aggregation of a series of lysosomal molecules. The aggregation-sensitive lysosomal marker enzymes were optimally aggregated at intralysosomal pH. A similar pH dependence was recorded for aggregation of Lamp-II. The pH-dependent loss of solubility of isolated Lamp-II required components of the lysosome extract. Conditions of mild acid pH promoting aggregation triggered the formation of complexes with lipids of lysosomal origin. We fractionated a membrane-free lysosome extract by gel-filtration chromatography and could reconstitute assemblies in vitro from separated fractions. We found some selectivity in the lysosomal proteins binding to complex lipids, phosphatidylcholine, sphingomyelin, and phosphatidylethanolamine being most effective. We propose that the formation at pH 5.0 of such supramolecular assemblies between lysosomal proteins and lipids occurs within the intralysosomal environment. Some possible consequences of such an intralysosomal matrix formation on organelle function are discussed.  相似文献   

12.
Lysosomes were isolated from the livers and from the kidneys of rats treated or not treated with the cysteine proteinase inhibitor leupeptin, and the levels of the intralysosomal serum albumin of the leupeptin-treated rats were compared with those of the saline-treated control rats. Leupeptin caused an intralysosomal accumulation of albumin in vivo because of its potent inhibition of lysosomal protein degradation. In fact, the lysosomes isolated from the livers and kidneys of leupeptin-treated rats almost completely lost their ability to degrade rat albumin in vitro. These findings show that the lysosomes are subcellular sites of the degradation of unlabeled serum albumin in these tissues. They also suggest that cysteine proteinases sensitive to leupeptin are involved in the lysosomal degradation of albumin. Albumin was degraded by total lysosomal enzymes in vitro. It was also degraded by the lysosomal extract being devoid of cathepsins H and J, prepared from rat kidney. The degradation of albumin by total lysosomal enzymes in vitro was greatly suppressed by a cysteine proteinase inhibitor, cystatin alpha, with no inhibition of cathepsins B and L. It was slightly suppressed by N-(L-3-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-prol ine (CA-074), a selective inhibitor of cathepsin B, and by pepstatin, an inhibitor of cathepsin D, whereas it was markedly suppressed by a combination of cystatin alpha and either CA-074 or pepstatin. These and associated findings show that cystatin alpha-sensitive cysteine proteinase(s), which is distinct from cathepsins B, H, L, and J, and cathepsins B and D are involved in the lysosomal degradation of albumin.  相似文献   

13.
The interactions between the autophagic and the endocytic degradation pathways were investigated by means of immunogold labeling of autophagic vacuoles (AVs) in ultrathin frozen sections from isolated rat hepatocytes. AVs were identified by their autophagocytosed contents of the degradation-resistant cytosolic enzyme CuZn-superoxide dismutase (SOD). Another cytosolic enzyme, carbonic anhydrase (CAIII), was rapidly degraded in the lysosomes, making the vacuolar CAIII/SOD ratio useful as a rough indicator of the progress of autophagic-lysosomal degradation. Lysosomes could be recognized by the presence of the lysosomal membrane glycoprotein lgp120, which was absent from hepatocytic endosomes. Endocytic inputs into the AVs were detected by the presence of gold-conjugated bovine serum albumin (BSA-gold), taken up by fluid-phase endocytosis. All vacuoles recognized morphologically as AVs were SOD-positive, as were essentially all of the lysosomes (96%). The majority (72%) of the lysosomes also labeled positively for BSA within 2 h of endocytosis. The data are thus compatible with the notion that all lysosomes can engage in both autophagic and endocytic degradation. Lgp120 appeared to distinguish well between lysosomes and nonlysosomal AVs: the lgp120-negative AVs (nonlysosomes) had a CAIII/SOD ratio identical to that of the cytosol, indicating that no degradation had occurred. In the lgp120-positive AVs (lysosomes), the ratio was only 43% of the cytosolic value, consistent with substantial CAIII degradation. Among the nonlysosomal AVs (about one-third of all AVs), one-half were BSA-positive, suggesting that early AVs (autophagosomes) and suggesting that early AVs (autophagosomes) and intermediary AVs (amphisomes) that had fused with endosomes were equally abundant. These morphological data thus support previous biochemical evidence for a prelysosomal meeting of the autophagic and endocytic pathways. The microtubule inhibitor vinblastine inhibited the autophagic influx to the lysosomes, causing an accumulation of autophagosomes and a reduction in average lysosomal size. Vinblastine also inhibited the endocytic flux, thereby precluding the formation of amphisomes and of BSA-positive lysosomes. High concentrations (20 mM) of asparagine induced swelling of amphisomes and of BSA-positive lysosomes, probably reflecting an acidotropic effect of ammonia generated by asparagine deamination. Asparagine also caused an accumulation of autophagosomes, amphisomes, and BSA-negative lysosomes, presumably as a result of impaired fusion with the swollen BSA-positive lysosomes. The two agents thus appear to perturb the autophagic-endocytic-lysosomal vacuole dynamics by different mechanisms, making them useful in the further study of these complex organelle interactions.  相似文献   

14.
In lysosomes isolated from rat liver and spleen, a percentage of the intracellular inhibitor of the nuclear factor kappa B (IkappaB) can be detected in the lysosomal matrix where it is rapidly degraded. Levels of IkappaB are significantly higher in a lysosomal subpopulation that is active in the direct uptake of specific cytosolic proteins. IkappaB is directly transported into isolated lysosomes in a process that requires binding of IkappaB to the heat shock protein of 73 kDa (hsc73), the cytosolic molecular chaperone involved in this pathway, and to the lysosomal glycoprotein of 96 kDa (lgp96), the receptor protein in the lysosomal membrane. Other substrates for this degradation pathway competitively inhibit IkappaB uptake by lysosomes. Ubiquitination and phosphorylation of IkappaB are not required for its targeting to lysosomes. The lysosomal degradation of IkappaB is activated under conditions of nutrient deprivation. Thus, the half-life of a long-lived pool of IkappaB is 4.4 d in serum-supplemented Chinese hamster ovary cells but only 0.9 d in serum-deprived Chinese hamster ovary cells. This increase in IkappaB degradation can be completely blocked by lysosomal inhibitors. In Chinese hamster ovary cells exhibiting an increased activity of the hsc73-mediated lysosomal degradation pathway due to overexpression of lamp2, the human form of lgp96, the degradation of IkappaB is increased. There are both short- and long-lived pools of IkappaB, and it is the long-lived pool that is subjected to the selective lysosomal degradation pathway. In the presence of antioxidants, the half-life of the long-lived pool of IkappaB is significantly increased. Thus, the production of intracellular reactive oxygen species during serum starvation may be one of the mechanisms mediating IkappaB degradation in lysosomes. This selective pathway of lysosomal degradation of IkappaB is physiologically important since prolonged serum deprivation results in an increase in the nuclear activity of nuclear factor kappa B. In addition, the response of nuclear factor kappa B to several stimuli increases when this lysosomal pathway of proteolysis is activated.  相似文献   

15.
Irreversible damage to Friend's erythroleukemia cells was caused by induction of endogenous heme biosynthesis with the differentiating agent N,N'-hexamethylene bisacetamide followed by a 30-min exposure to 0.25 mM H2O2. Early irreversible ATP depletion was observed concomitant with oxidative inactivation of the mitochondrial ATP synthase. Cell proliferative capacity was also impaired within 2 h of the treatment, and progressive delayed cell lethality, starting 2 h after the insults, was also found. Based on the prevention provided by specific antioxidants and on the absence of malodialdehyde production, all the effects were ascribed to the oxidant action of .OH radicals, or closely related species, generated through iron-catalyzed reactions of H2O2, which apparently caused site-directed oxidative modifications of iron-binding proteins, in particular mitochondrial ATP synthase, rather than peroxidation of membrane lipids. Similar effects were mimicked even in the parental cell line when oligomycin was used to inhibit selectively mitochondrial ATP synthase activity, thereby lowering the enzyme activity to a level similar to that found in H2O2-damaged differentiating cells. Hence, induction of erythroid differentiation makes the mitochondrial ATP synthase a major target of H2O2 by enhancing the availability of redox-active iron in the local environment of the enzyme. Subsequent oxidative inactivation of the mitochondrial ATP synthase, resulting in severe energy impairment, leads to loss of cell growth capacity. Erythroleukemia cells may serve as a model system for the combination of two selective properties: (1) the capacity for carrying out efficient heme synthesis and/or for undergoing iron overload-like state; and (2) subsequent enhanced sensitivity to reactive oxygen species generators. Early severe mitochondrial dysfunction and energy impairment may be a major part of the mechanism of the sensitivity.  相似文献   

16.
Ferritin contains most of the iron found in the brain, and the release of iron from ferritin has an essential role in iron-dependent lipid peroxidation. We examined the effect of cultured microglia on the ferritin-dependent lipid peroxidation of phospholipid liposomes monitored by the formation of thiobarbituric acid-reactive substances. Microglia stimulated by phorbol myristate acetate caused lipid peroxidation in the presence of ferritin. This lipid peroxidation was mediated by superoxide produced by the microglia and iron released from the ferritin. Lipid peroxidation induced by activated microglia may be partly responsible for the oxidative damage that is thought to occur in Parkinson's disease and other neurodegenerative disorders.  相似文献   

17.
We studied the effects of nitric oxide (NO) on the control of excess cellular heme and release of catalytically active iron. Endothelial cells (ECs) exposed to hemin followed by a NO donor have a ferritin content that is 16% that of cells exposed to hemin alone. Hemin-treated ECs experience a 3.5-fold rise in non-heme, catalytic iron 2 h later, but a hemin rechallenge 20 h later results in only a 24% increase. The addition of a NO donor after the first hemin exposure prevents this adaptive response, presumably due to effects on ferritin synthesis. NO donors were found to reduce iron release from hemin, while hemin accumulated in cells. A NO donor, in a dose-dependent fashion, inhibited heme oxygenase activity, measured by bilirubin production. Using low temperature EPR spectroscopy, heme oxygenase inhibition correlated with nitrosylation of free heme in microsomes. Nitrosylation of cellular heme prevented iron release, for while there was heme oxygenase-dependent release of iron in cells incubated with hemin for 24 h, the addition of a NO donor blocked iron release. This indicates that NO readily nitrosylates intracellular free heme and prevents its degradation by heme oxygenase. Nitrosylation of heme was found to reduce sensitization of cells to oxidative injury.  相似文献   

18.
The subcellular localization of samarium and europium, two rare-earths, increasingly used in both medical and industrial fields, has been studied in several organs such as liver and kidney but never in the mammary gland despite of its importance in the biology of lactation and nutrition domains. The intracellular behaviour of samarium and europium after their intra-peritoneal administration in the lactating mammary gland cells was investigated. The results showed the presence of very electron dense deposits in the glandular epithelial cell lysosomes. These particular lysosomes were never observed in the mammary cell lysosomes of control rats. These intralysosomal deposits were probably composed of insoluble samarium or europium phosphates by analogy with previous studies, the transmission electron microscopy, the ion mass microscopy and the electron probe microanalysis, and other techniques allowing the identification of the chemical structure of the intralysosomal deposits.  相似文献   

19.
A deficiency in important components of the endogenous antioxidative defense system (AODS) against the production of reactive oxygen species, including free radicals, results in the accumulation of oxidative damage, inducing oxidative stress. A dietary deficiency in selenium (Se), an important part of AODS, can increase the sensitivity of a living system to oxidative stress. We investigated the effects of Se supplementation, in the form of Se-enriched yeast, on the AODS resistance of red blood cells (RBC) to experimentally induced oxidative stress. We analyzed the alterations in main components of the AODS, such as the amount of reduced (GSH) oxidized glutathione (GSSG), Se-dependent glutathione peroxidase (GSH-Px), Se content, catalase (CAT), and thiobarbituric acid reactive substances (TBARS), in RBC of male Wistar rats exposed to gamma rays and supplemented with Se-enriched yeast (SeY) in drinking water. The results suggested that the increased Se level generally exhibited a protective effect against whole body irradiation, reducing the expenditure of the AODS components in defense. These reductions differed depending on the time observed and the parameter investigated but, generally, SeY supplementation induced a faster restoration of the AODS after this kind of oxidative stress.  相似文献   

20.
Low concentrations of some neutral dipeptides, such as L-Ala-L-Ala, rapidly disrupt rat liver lysosomes. The phenomenon has been attributed to an osmotic imbalance generated by the production of amino acids in the lysosome by lysosomal dipeptidase activity. This hypothesis is challenged by testing several pairs of dipeptides available in both D- and L-forms and a range of dipeptides whose susceptibility to lysosomal dipeptidase activity is known. A good correlation was found between the lytic ability of dipeptides and their capacity to cross the lysosome membrane and be hydrolysed by lysosomal dipeptidase. The osmotic-imbalance hypothesis is critically evaluated in the light of the results and of recent information concerning the carrier-mediated transport of amino acids and dipeptides across the lysosome membrane. It is concluded that intralysosomal generation of amino acids remains the most plausible explanation of the lytic activity of dipeptides, and that the dipeptide porter(s) in the lysosome membrane must have higher Km than the amino acid porters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号