首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different welding thermal cycles from single-pass to triple-pass were performed on two kinds of 2304 duplex stainless steel through Gleebe thermal–mechanical simulator. The corresponding microstructure was observed, while the pitting corrosion resistance was investigated in 1.0 M NaCl by potentiostatic critical pitting temperature (CPT). The results showed that single-pass welding deteriorated microstructure and pitting corrosion resistance significantly. As the welding pass increased, the ferrite content decreased and CPT increased. However, CPT was still lower than that of the base metal. Nitride precipitated at the boundary between ferrite and austenite phase for low-alloyed 2304 after the single-pass welding thermal cycle.  相似文献   

2.
To study the pitting corrosion of AISI 316L weld metals according to the chromium/nickel equivalent ratio (Creq/Nieq ratio), three filler wires were newly designed for the flux-cored arc welding process. The weld metal with delta-ferrite at less than 3 vol.%, was observed for ductility-dip cracking (DDC) in the reheated region after multi-pass welding. The tensile strength and yield strength increased with increasing Creq/Nieq ratio. The result of anodic polarization tests in a 0.1 M NaCl solution at the room temperature (25) for 45 min, revealed that the base metal and weld metals have a similar corrosion potential of −0.34 VSCE. The weld metal with the highest content of Cr had the highest pitting potential (0.39 VSCE) and the passivation range (0.64 VSCE) was higher than the base metal (0.21 VSCE and 0.46 VSCE, respectively). Adding 0.001 M Na2S to the 0.1M NaCl solution, the corrosion occurred more severely by H2S. The corrosion potentials of the base metal and three weld metals decreased to −1.0 VSCE. DDC caused the decrease of the pitting potential by inducing a locally intense corrosion attack around the crack openings.  相似文献   

3.
X80管线钢埋弧焊焊接接头的组织和腐蚀性能   总被引:6,自引:5,他引:1       下载免费PDF全文
采用H08MnMoA焊丝埋弧焊焊接X80管线钢.利用扫描电镜分析焊接接头微观组织;采用动电位极化和电化学阻抗法研究了X80管线钢其焊接接头在0.5 mol/LNaHCO3+0.02 mol/L NaCl溶液中的腐蚀行为.结果表明,在0.5 mol/L NaHCO3+0.02mol/L NaCl溶液中,由于显微组织上的差...  相似文献   

4.
The effects of shielding gas on the microstructure and localized corrosion of tube-to-tube sheet welds of SR-50A super austenitic stainless steel for seawater cooled condense were investigated in highly concentrated chloride environments. The localized corrosion resistance of the weld metal after welding with an Ar shielding gas supplemented with N2 increased due to a decrease in the pitting resistance equivalent number (PREN) difference between the PRENIR of interdendritic region and the PRENDC of dendrite core. The localized corrosion was selectively initiated at the dendrite core because the PREN of the dendrite core was smaller than that of the interdendritic region.  相似文献   

5.
Abstract

In welding of high nitrogen steel (HNS), it is essential to control the nitrogen content and porosity in the weld metal. In this paper, the influence of shielding gas composition and heat input on the nitrogen content and porosity in the weld metal of HNS was investigated by gas tungsten arc welding. The experimental results indicate that the weld nitrogen content increases as N2 in the shielding gas is increased in the same heat input of welding. The weld nitrogen content decreases with increasing the heat input for pure argon used as a shielding gas, whereas it increases with increasing the heat input for the shielding gas including some nitrogen. The nitrogen pore can be avoided when the nitrogen content in the shielding gas is <4% in the heat input range of 528–2340 J mm–1.  相似文献   

6.
Abstract

The effects of shielding gas composition on the properties and microstructure of single pass weld metals produced by GMA (gas metal arc) groove welding of 950 MPa class steel plates have been investigated. The shielding gas employed was a mixture of argon (Ar) and carbon dioxide (CO2) (0–25%), and the weld heat input was ~3 kJ mm. With increasing CO2 content, the hardness of the weld metal decreased from 380 HV to 280 HV, and the absorbed energy of the Charpy impact test decreased from 130 J to 90 J. The microstructures of the weld metal, consisting primarily of low carbon martensite and carbide free bainite, became more bainitic as the CO2 content of the shielding gas was increased. It was also found that the MA constituent, embrittling microstructure, was formed in the granular bainitic area, the volume fraction of which increased with the CO2 content of the shielding gas.  相似文献   

7.
The influence of welding current and nitrogen content in argon shielding gas on the resistance of the welded joint (weld metal and heat-affected zone [HAZ]) of the stainless steel X5CrNi18-10 to the formation and growth of pits was investigated. Also, the susceptibility of the welded joint to intergranular corrosion was examined. Pitting corrosion resistance indicators were determined based on anodic potentiodynamic polarization measurements in NaCl + Na2SO4 solution, while susceptibility to intergranular corrosion was determined by the potentiokinetic method with a double loop (DL EPR). SEM/EDS was used to analyze the microstructure. It has been shown that higher nitrogen content in shielding gas leads to an increase in the resistance of welded joints (weld metal and HAZ) to the pit formation. However, an improvement in the resistance to the pit formation leads to a decline in the resistance of the welded joint to pit growth. An explanation of this phenomenon is proposed. Also, it was shown that the increase of the welding current increases the susceptibility of the welded joint to intergranular corrosion, while the higher nitrogen content has no effect.  相似文献   

8.
Abstract

In this paper, the galvanic corrosion of individual components of a 17-4PH repair welded stainless steel in 3·5% NaCl solution was investigated using various dc electrochemical measurements and microscopy. Open circuit potential measurement of the regions in the vicinity of a repair weld [i.e. parent metal, weld metal and heat affected zone (HAZ)] in 17-4PH stainless steel in 3·5% NaCl solution indicated that the most likely galvanic couple was between HAZ and weld with the HAZ acting as the anode and weld metal as the cathode. Slow scan rate potentiodynamic polarisation measurement of pitting potentials revealed a lower passive current density and a higher pitting potential in the weld region, while the HAZ showed the highest passive current density and the lowest pitting potential. Observation of the material after applying an anodic potential close to the pitting potential of the individual weld parts also confirmed the formation of several stable pits in the HAZ but only a few metastable pits in the weld and parent metal zones. Galvanic coupling using a zero resistance ammeter also showed a higher current density in the weld metal/HAZ as compared with the parent metal/HAZ and parent metal/weld galvanic couples. Although, the current densities in all measurements were in the range of a few to tenths of nanoampere per square centimetre, it can still be concluded that the weld metal/HAZ couple has the highest risk of galvanic corrosion among the three individual galvanic couples.  相似文献   

9.
This paper identified the effects of Ti and Nb on pitting and intergranular corrosion resistance in a ferritic stainless steel weld metal of the automobile exhaust system. We fabricated 4 flux cored wires designed with 0–0.2 wt% Ti and 0–1.0 wt% Nb and performed Flux Cored Arc Welding. Through the potentiodynamic polarization test in 0.5M NaCl, we evaluated pitting resistance. And in order to evaluate the intergranular corrosion resistance, we observed microstructure after we performed DL-EPR test in 0.5M H2SO4+0.01M KSCN. As a result of the test, the specimen added with 0.2%Ti+1.0%Nb showed the highest pitting resistance. From observing the degree of sensitization and microstructure, the intergranular corrosion resistance was higher as the contents of Ti and Nb increased. And through EBSD we observed Cr carbide which affects the corrosion resistance.  相似文献   

10.
This study considers the corrosion behavior of the X5CrNi18 10 stainless steel-welded joint in NaCl solution, with and without the presence of several corrosion inhibitors (NaNO3, Ce(NO3)3, and CeCl3). The degree of sensitization of the welded joint to intergranular corrosion is determined using the electrochemical potentiokinetic reactivation method with a double-loop method. Pitting corrosion tests are performed by the potentiodynamic method. Resistance to general corrosion and the stability of the passive film is assessed based on the results of electrochemical impedance spectroscopy measurements, as well as on the values of the corrosion and passivation current. The main goal of this study is to determine the relation of the welded joint microstructure to general and pitting corrosion in the presence of the corrosion inhibitors. The value of pitting potential for the base metal and weld metal in the presence of the NaNO3 or Ce(NO3)3 inhibitor is shifted to potentials in the transpassive area. The pitting potential for the heat-affected zone also possesses a noticeable higher value. However, nitrate ions do not increase the general corrosion resistance of any part of the welded joint. CeCl3 does not increase resistance to general or pitting corrosion.  相似文献   

11.
The effects of solution heat-treatment and shielding gas on the pitting corrosion of hyper duplex stainless steel (HDSS) welds were investigated in highly concentrated chloride environments. The pitting resistance of a solution heat-treated HDSS after welding with an Ar shielding gas supplemented with N2 was greatly increased due to the dissolution of Cr2N in α-phase, which followed the diffusion of N atoms from the α-phase to the γ-phase and an increase of the γ-phase in the weld metal and heat affected zone. It was also attributed to a decrease of the pitting resistance equivalent number difference between the two phases.  相似文献   

12.
采用气体保护钨极氩弧焊(GTAW)、焊条电弧焊(SMAW)和埋弧焊(SAW)对2205双相不锈钢进行焊接,采用光学显微镜对接头组织进行观察,采用数点法计算铁素体相的含量,测定接头的耐点蚀和耐CO2应力腐蚀性能,研究焊接方法对接头耐蚀性的影响。结果表明,焊接方法影响焊缝组织形态及铁素体含量。GTAW焊缝由不规则的条状组织和两相交织分布的块状组织组成,而SMAW和SAW焊缝为方位不一的条状组织和少量的块状组织。GTAW和SMAW焊缝的铁素体含量为35%~55%,而SAW的不足20%。接头的耐蚀性与铁素体相比例密切相关,GTAW、SMAW和SAW的耐蚀性依次降低。从铁素体相比例和耐蚀性角度考虑,GTAW和SMAW能够获得满意的焊接接头。  相似文献   

13.
超级双相不锈钢多层多道焊接接头组织及腐蚀性能   总被引:4,自引:4,他引:0       下载免费PDF全文
选用2507超级双相不锈钢作为研究对象,研究钨极氩弧焊多层多道焊接接头的组织和腐蚀性能.采用两种不同保护气进行钨极氩弧焊,主要讨论焊接道次和氮气添加对组织和腐蚀性能的影响.结果表明,焊缝中心均有较高的奥氏体含量,其腐蚀速率是焊根部位的0.68倍;盖面和焊根奥氏体含量相近,但盖面由于其弥散且尺寸相对较大的晶内奥氏体表现出更好的耐腐蚀性,焊根是焊缝金属的薄弱区域.混合区由于热影响区的存在腐蚀速率最快.保护气中氮气的添加促进了奥氏体的生成,降低了腐蚀电流密度一个数量级,提高了整体的腐蚀性能.  相似文献   

14.
In this work, supermartensitic stainless steel pipes were radial friction (RF) welded and their corrosion behaviours were studied based on potentiodynamic polarisation and double-loop electrochemical potentiokinetic reactivation tests. Measurements were performed on samples taken from the base metal (BM), weld interface and consumable ring (CR) of the RF weldment. The corrosion properties are discussed in terms of their resulting metallurgical microstructure. The precipitation of Cr carbides that takes place during the tempering treatment induces a substantial Cr depletion value (Ir/Ia = 54.22%). On the other hand, CR and weld interface regions, which had their microstructure transformed and their Cr carbide precipitates redissolved by the RF welding thermomechanical cycle, present a low level of Cr depletion (Ir/Ia < 1%). The AC microstructure, which is composed of a mixture of virgin martensite and stable retained austenite, presents an increase in pitting corrosion resistance compared to the tempered structure of the BM region. It was also observed that the δ-ferrite decreases the pitting resistance of the weld interface region.  相似文献   

15.
Activated tungsten inert gas (A-TIG) and flux-cored arc (FCA) weld metals were prepared using 304LN stainless steel plate. The weld metals were thermally aged at 923, 973 and 1023?K for 100?h to study the decomposition of initial δ-ferrite in A-TIG (~10 ferrite number (FN)) and FCA (~5 FN) weld metals into secondary phases like M23C6 carbides, χ and σ. Ferrite number is the measurement of δ-ferrite based on the principle of magnetic property using ferritescope. Preliminary microstructural studies revealed the formation of carbides in FCA weld metals aged at 923?K for 100?h, which was correlated with higher carbon content (0.04?wt-%), and also ageing at higher temperature transformed δ-ferrite into χ/σ phases. However, A-TIG weld metals showed the transformation of δ-ferrite mainly into χ/σ phases. The δ-ferrite transformation kinetics was found to be sluggish in A-TIG weld metals compared to FCA weld metals. This difference was attributed to the difference in the carbon contents of A-TIG and FCA welds. Activated tungsten inert gas weld metals showed better uniform and pitting corrosion resistance compared to FCA weld metals in as-deposited and thermally aged conditions. Presence of higher amount of initial δ-ferrite content in A-TIG weld metal helped diffusion of minor alloying elements like sulphur and phosphorous into it, thereby reducing their microsegregation at the δ/γ interface boundaries and subsequent pitting corrosion attack. Thus, A-TIG welding process was found to be superior compared to FCA welding process.  相似文献   

16.
Summary

Type 329J1 duplex stainless steel was welded by gas tungsten arc welding in argon‐nitrogen mixed gas atmospheres. The tensile properties and microstructures of the weld metals were examined. The nitrogen content increases and the ferrite content decreases with increasing nitrogen partial pressure of the atmosphere. The ferrite content linearly decreases with an increasing nitrogen content. The tensile strength and elongation of the weld metal produced in the argon atmosphere are much lower than those of the base metal, but they increase with an increasing nitrogen content and approximate those of the base metal at around 0.4 mass% nitrogen content. The fractographs suggest that only the base metal and high‐nitrogen weld metal clearly show dimple patterns. The tensile‐tested base metal and high‐nitrogen weld metal have complex crack paths, whereas the other weld metals have relatively straight paths. The tensile properties of the weld metal are affected by the ferrite content and chromium nitride.  相似文献   

17.
Abstract

The influence of electrolyte composition and temperature on the pitting corrosion resistance of nitrogen bearing (0·015, 0·198, and 0·56%N) type 316L stainless steels has been investi gated. Anodic polarisation curves were determined in neutral chloride solution at room temperature and at elevated temperatures of 308, 318, and 333 K. Similar polarisation studies were also conducted at room temperature in 1N H2 SO4 and in an acidic chloride solution containing 1N H2 SO4 and 0·5M NaCl. The results show that the critical pitting potential Epp in neutral chloride and acidic chloride media increases as the nitrogen content of the alloy increases, indicating that resistance to pitting increases with the addition of nitrogen. However, in 1N H2 SO4 solution, the transpassive potential was almost independent of the nitrogen content. As the temperature of the neutral chloride medium was increased, the Epp values decreased, irrespective of nitrogen content. The decrease in Epp is attributed not only to the temperature induced modification of the passive oxide film but also to chloride induced activity at the passive film/solution interface. Nevertheless, the alloy con taining 0·56% nitrogen showed better resistance to pitting at 333 K than did the alloy with 0·015% nitrogen at room temperature. SEM examination of the pitted specimens showed clear evidence of pitting for the alloy with 0·015% nitrogen, but insignificant pitting attack for the alloy with 0·56%N. However, the alloy with 0·56%N displayed some pitting attack when the experiments were conducted at 333 K.  相似文献   

18.
The corrosion behavior of 28Cr-7Ni-O-0.34N duplex stainless steels in air-saturated 3.5-wt% NaCl solution at pH 2, 7, 10 and 27 °C was studied by the potentiodynamic method. Two types of microstructures were investigated: the as-forged duplex and microduplex (average austenite grain size 5-16 μm) structures. The austenite volume fractions of the tested steels were between 0.35 and 0.64. The nitrogen effect on corrosion behaviors of both duplex and microduplex stainless steels were the same. At pH 2, the corrosion potential increased when the nitrogen content increased, however, corrosion current density as well as corrosion rate decreased. At pH 7 and 10, the effect of nitrogen on corrosion potential and corrosion rate could not be observed. Corrosion potential at pH 10 was lower than at pH 7. Pitting potential increased when the nitrogen content in the tested steels increased at all tested pH. For the nitrogen effect on the passive current density, it seemed that only at pH 2, the average passive current densities reduced when the nitrogen content increased. Nitrogen may have participated in the passive film or has been involved in the reaction to build up passive film. The ammonium formation and nitrogen enrichment at the interface metal/passive film with adsorption mechanism were discussed. The dissolute nitrogen might have combined with the hydrogen ions in solution to form ammonium ions, resulting in increasing solution pH. The steel could then easily repassivate, hence the corrosion potential and pitting potential would increase. However, the ammonium formation mechanism could not explain the decrease of corrosion potential in basic solution. Nitrogen enrichment at the metal/passive film interface with adsorption mechanism seemed to be an applicable consideration in increasing pitting potential. However, this mechanism did not involve the ammonium ion formation. In general, for the duplex and microduplex stainless steels tested, nitrogen increased the general corrosion resistances in acid solution and pitting corrosion resistance at all solution pH. Metallographic observation in both tested duplex and microduplex steels after pitting corrosion at all tested pH revealed that, the corroded structure in the tested steels without nitrogen alloying was austenite, but those with nitrogen alloying was ferrite. Even though ferrite had a higher chromium content than austenite but higher dissolved nitrogen in austenite than in ferrite may have increased the pitting resistance equivalent number (PRE) of austenite to be higher than that of ferrite.  相似文献   

19.
The corrosion resistance of a weld has a great impact on the service life of the joint. Changes in welding parameters can cause changes to the heat input, which affect the formation of the weld bead and the precipitation of the second phase, which determines the corrosion resistance of the weld. In this paper, the effect of a change in the welding speed on 2195 aluminium–lithium (Al–Li) alloy joints welded by laser and metal inert gas (laser-MIG) hybrid welding using Al–Si welding wire was studied. The macrostructure and microstructure of the weld were characterized by optical microscopy, X-ray diffraction, and scanning electron microscopy. The results show that the predominant precipitates in the laser-MIG hybrid welded Al–Li alloy were the θ (Al2Cu) and T (Al–Li–Si) phases. As the welding speed increased from 11.5 mm/s to 16.5 mm/s, the heat input decreased, and the amount of the precipitated phase increased. Intergranular corrosion and electrochemical experiments were carried out on the weld seam, and the corrosion resistance was tested. With increasing welding speed, the corrosion resistance of the weld decreased. The high potential of the precipitated phase decreased the corrosion resistance of the weld joint.  相似文献   

20.
M.H. Moayed 《Corrosion Science》2006,48(11):3513-3530
This paper deals with the effect of adding sulfate on the critical pitting temperature (CPT) of highly alloyed austenitic stainless steel. A large number of potentiodynamic CPT measurements and potentiostatic current-time curves were obtained in 1 M NaCl containing 0, 0.2, 0.5 and 0.75 M Na2SO4. Provided the CPT is defined as the first temperature where stable pitting occurs at intermediate potentials, such as 600 mV (Ag/AgCl), addition of sulfate is shown to have the unexpected effect of lowering the CPT. The growing pits formed in sulfate-containing solution passivate anodically as the potential is increased, perhaps via salt precipitation. The effect of sulfate on pitting kinetics was studied using 50 μm-dia. 302SS wire in 1 M NaCl and 1 M NaCl + 0.5 M Na2SO4 at 40 °C. Sulfate increases the critical concentration of metal salt in the pit, expressed as a fraction of the saturation concentration, that is required to sustain pit dissolution. Provided this fraction does not exceed 100% of saturation, passivation is enhanced just inside the pit rim, allowing earlier undercutting of the metal surface and a finer pore structure in the lacy metal cover over the pit. The pitting potential measured above the CPT is increased by sulfate addition, but the CPT itself is lowered. Related examples are cited where pitting shows an unusual dependence on some variable such as anion concentration or temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号