首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 56 毫秒
1.
光谱共焦位移传感器物镜设计   总被引:2,自引:3,他引:2  
高精度非接触式位移传感器有着广泛的应用.本文讨论其中一种采用光学方法实现非接触测量的光谱共焦位移传感器,阐述该传感器的工作原理,给出了该系统的设计方法和评价方法.最后基于光学设计软件CODE V的宏语言和数学软件MATLAB设计出了一个测量范围为0~1.173 mm的光谱共焦位移传感器物镜.该物镜采用一个单透镜和双胶合透镜组合的结构,在工作波长范围内,各个单波长对应最大的RMS半径为2.8 μm,其测量精度优于5 μm,波长离焦量和波长之间线性度通过线性回归拟合得出判定系数为0.985 9,测量的线性度优异.  相似文献   

2.
《中国测试》2017,(1):69-73
为实现光谱共焦位移传感器的小型化、低功耗和高精度,在设计过程中选择体积小、耗电量小的白光LED作为传感器的光源,并使用光纤耦合器代替复杂的分光棱镜式光学系统结构。色散镜头采用消色差透镜与非球面透镜组合的方式,在使用较少透镜数量的情况下达到较好的像差校正能力。同时结合光强归一化等数据处理方法,消除白光LED光源光谱光强分布不均匀等因素对测量精度造成的影响,得到准确、稳定的峰值波长与位置间的对应关系。通过双频激光干涉仪对系统进行标定和测量,实验结果表明使用435~655 nm波段,系统测量范围可以达1.7 mm,平均测量精度1.8μm,满足一定的测量需求。  相似文献   

3.
刘乾  杨维川  袁道成  刘波 《光电工程》2012,39(8):111-117
色散物镜是光谱共焦显微镜的关键组件,其轴向色散线性度和色散范围会影响光谱共焦显微镜的性能。在线性轴向色散的理论基础上,研究了优化选择材料组合的方法,给出了优化模型和求解方法,得到了具有最大色散的材料组合及其光焦度分配,并使用光学设计软件对优化结果进行了模拟。模拟结果表明,使用本文优化方法得到的材料组合,波长与轴向色散成线性关系,而且具有最大的轴向色散。使用得到的最大色散材料组合进行色散物镜设计,得到了较好线性度的色散物镜,并具有较短的有效焦距。本文给出的优化选择材料组合的方法可以为设计光谱共焦显微镜提供指导,有效缩短镜筒长度,提高光谱共焦显微镜的性能。  相似文献   

4.
为实现高精度、高轴向分辨率的光谱共焦显微位移测量,提出一种将二元衍射透镜引入测量系统的方法。该方法中二元衍射透镜相比于传统折射透镜色散线性度更好,且在消色差的同时减小单色像差特别是对测量影响较大的轴上球差的影响。在数据处理上采用中值滤波减小随机噪声对谱峰定位造成的影响,质心法和多项式拟合的方法分别减小峰值波长提取和标定曲线拟合的误差。实验选用白光光源,采用50×物镜和100×物镜分别和二元衍射透镜组合搭建系统,通过PI纳米位移台对系统进行标定和测量。实验结果表明,100×物镜系统测量精度更高,测得该系统在432~807 nm的波长范围内,测量范围为40μm,系统的平均测量精度可达0.046 2μm,轴向分辨率优于0.2μm,符合微小间距测量的要求。  相似文献   

5.
针对高准确度光谱共焦传感器缺乏相应校准装置及方法的问题,提出了一种基于激光干涉测量的校准方法,并研制了相应的校准装置。一方面,提出了一种波长倍数间隔测量法,通过位移反馈控制将位移间隔设置为激光波长的整数倍,以减小激光干涉仪非线性误差对测量的影响;另一方面,提出了测点修正算法,消除了受检点处位移标准值因校准装置定位准确度限制不重合对测量的影响。实验结果表明:在0~100μm的测量范围内,示值误差为±23 nm,重复性为5 nm,示值误差测量结果的扩展不确定度U2=7.0 nm(k=2)。构建的校准装置在0~50 mm的测量范围内的示值误差测量结果不确定度为U1=3.0 nm+2×10-7L(k=2)。  相似文献   

6.
光谱共焦测量技术由于其具有测量精度高、测量速度快、可以实现非接触测量的独特优势而被广泛应用于工业级测量。介绍了光谱共焦技术的原理,列举了国内外光谱共焦传感器在精密几何量计量测试中的一些典型应用,展望光谱共焦传感器的应用发展前景。  相似文献   

7.
为了满足小口径深孔类零件的高精度非接触测量需求,研制了一套适用于较大测量范围的高分辨力光学测量系统。利用色散共焦测量原理,建立了微位移量系统,结合光谱分析技术,形成了高分辨力光学测量系统。首先,基于色散共焦原理,设计了色散物镜结构;其次设计爬行结构,利用电机带动反射镜旋转,完成深管不同截面的径向几何尺寸测量;再次,通过最小二乘法以及误差分析与补偿,对系统误差进行分析;最后通过搭建实验平台验证。结果表明:该测量系统可实现小测量范围达到5 mm,测量误差优于3.3μm,具有测量精度高、测量范围较大、结构紧凑等优点,对解决小尺寸深孔类零件内径测量难题具有重要实用意义。  相似文献   

8.
为了提高加工检测效率,实现尺寸形位公差与微观轮廓的同平台测量,提出一种基于光谱共焦位移传感器在现场坐标测量平台上集成表面粗糙度测量的方法.搭建实验测量系统且在LabVIEW平台上开发系统的硬件通讯控制模块,并配套了高斯轮廓滤波处理及表面粗糙度的评价环境,建立了非接触的表面粗糙度测量能力.对标准台阶、表面粗糙度标准样块和...  相似文献   

9.
光谱共焦位移传感器能够实现对透明和非透明材质的几何量测量,该文设计一套基于光谱共焦技术的精密几何量测量系统,将测量轮廓数据转换为图像,基于图像处理技术实现对几何量测量点的准确定位。采用改进的最小二乘法对轮廓数据进行预处理,有效提高系统几何量测量结果的动态重复性,同时系统测量软件直观友好地提供手动轮廓外形编辑和测量工具。实验结果表明:系统能够对透明物体的几何量进行精确测量,自动测量陶瓷标准块厚度的动态重复性不超过1μm。  相似文献   

10.
为了精密测量ICF靶零件的平行度,本文提出了一种基于双面白光共焦光谱的样品平行度测量方法。该方法利用双向对顶安装的白光共焦传感器组件、精密位移平台对样品上下表面轮廓进行测量,使用最小二成拟合方法计算上下表面相对于水平平面的角度偏差,然后,计算出样品的平行度。测量不确定度评估结果表明,当K=2时,该方法的测量不确定度可达0. 0016°。  相似文献   

11.
目的为提高包装机械手末端执行器轨迹跟踪精度,提出一种三维运动轨迹跟踪方法。方法获取拉绳式位移传感器在预先建立的三维坐标系中坐标数据和拉线长度。利用坐标和拉线长度计算运动物体的三维坐标数据,进而形成所述运动物体的三维运动轨迹。同时,给出基于ARM的轨迹跟踪控制器结构以及软件实现方法。结果实验结果表明,与传统示教盒相比,该方法可将定位精度提高1倍,相关误差可控制在0.3 mm以内。该方法在执行效率方面大约能够提升33%,提高了包装机械手的执行速度和分拣效率。结论所述轨迹跟踪方法能够提高包装机械手末端执行器的定位精度和定位速度,符合包装、食品、化工等行业的工艺要求。  相似文献   

12.
激光位移传感器的计算机辅助设计和实验验证   总被引:2,自引:0,他引:2  
根据被测物体的表面反射模型,采用光线追踪法对所设计的激光位移传感器进行了计算机仿真,利用复合形法进行结构参数优化。在结构优化基础上,使用单片球面透镜获得了较高的线性关系。实验表明,此方法可以缩小传感器的结构尺寸、提高精度、降低成本。  相似文献   

13.
高精度电容式位移传感器校准方法的研究   总被引:1,自引:0,他引:1  
介绍一种使用激光干涉仪结合单轴精密位移台对电容式位移传感器进行校准的方法。建立了一套高精度电容式位移传感器校准装置,利用单轴精密位移台位移与电压之间的关系产生纳米级的微小位移,同时使用激光干涉仪和待校准电容式位移传感器测量单轴精密位移台的微小位移。该装置可实现电容式位移传感器线性度、测量重复性以及测量分辨率的校准。实验验证了此校准方法的准确性和实用性,对影响校准的主要因素进行了分析,其综合不确定度为2.2 nm。  相似文献   

14.
描述了角位移传感器的迟滞、重复性、非线性等主要技术指标的校准方法、校准步骤和数据处理方法、测量不确定度评定方法。  相似文献   

15.
一种绝对式容栅测量新技术   总被引:1,自引:0,他引:1  
在综合分析、比较现有容栅测量技术的基础上,介绍了一种绝对式容栅测量技术.这种技术克服了传统相对式容栅测量系统中存在的缺陷,利用两级耦合多精度合成实现测量位置的绝对编码,实现了高精度、大量程测量.首先介绍了用于高精度测量的容栅测量系统构成,讨论了绝对式测量的工作原理.给出的系统检测电路解决了传统鉴相型检测电路中滤波效应导致信号精确性受到损坏以及需要较长稳定时间的问题.  相似文献   

16.
用神经网络技术实现的光纤位移传感器   总被引:1,自引:0,他引:1  
朱庆保 《计量学报》2004,25(2):181-184
描述了一种智能型位移光纤位移传感器,它用差动比值法减小漂移和不同的反射介质的影响,用人工神经网络技术减小非线性误差。实验结果表明,使用这些技术后,各方面指标都远远优于传统方法。  相似文献   

17.
非接触磁耦合光纤光栅位移传感器   总被引:1,自引:0,他引:1  
研发了一种基于光纤Bragg光栅(fiber Bragg grating,FBG)技术的非接触磁耦合位移传感器.两块扁圆柱型硬磁铁通过软铁连接起来,形成一U型传感探头.该U型探头与被测物形成一闭合磁路,实现间隙与磁耦合力的转换,再通过一平面薄板结构将磁耦合力转变为光纤FBG的轴向应变.通过理论和实验详细地分析研究了上述两个关键技术环节.研究表明:该非接触位移传感器为一非线性传感器,非线性主要是由于磁耦合力与间隙的平方成反比这一传感器固有特性以及漏磁,特别是漏磁随间隙增加而变大造成的该非线性传感器的数据处理结果为:随机不确定度为0.23%;回程误差为0.376%;传感器综合误差为±0.606%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号