首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 183 毫秒
1.
基于MSC.Mare软件平台,建立了含SiCP体积分数为12%的SiCP/2024A1复合材料热挤压轴对称刚-塑性热力耦合有限元分析模型.利用该模型对复合材料的热挤压过程进行模拟,分析了热挤压过程中的载荷一行程曲线和材料流动状态,讨论了模具温度及挤压速度对挤压载荷的影响.模拟结果表明,该坯料在挤压比为30:1、挤压温度为400~450℃、挤压速度为0.1~1.0 mm/s、挤压载荷为4.0×106~5.0×106N之间能够顺利挤出表面无缺陷的复合材料棒材.最后通过在700 t水压机上采用相同工艺挤出高质量的复合材料棒材验证该工艺的可行性.  相似文献   

2.
挤压铸造法制备可变形SiCP/Al复合材料的组织与性能   总被引:11,自引:8,他引:3       下载免费PDF全文
通过在SiC颗粒预制块中加入铝粉的方法制备了颗粒含量可控的SiC颗粒预制块,并用挤压铸造法制备了可变形SiCP/Al复合材料。通过对颗粒体积含量为25%的SiCP/Al复合材料进行热挤压变形,研究了挤压变形的可行性及其对复合材料组织与性能的影响规律。实验结果表明,用本文中提出的新工艺制备的25vol%SiCP/Al复合材料可以成功地进行挤压比为25∶1的热挤压变形,并且热挤压变形可以明显提高复合材料的强度、刚度和塑性。  相似文献   

3.
SiCW/Zn-22Al复合材料的超塑性   总被引:2,自引:1,他引:1       下载免费PDF全文
对低压浸渗、挤压比为10∶1的热挤压以及固溶处理制备的15vol%SiCW/Zn-22Al复合材料的超塑性进行了研究。研究表明:在温度为658 K、初始应变速率为6.67×10-2s-1的拉伸变形条件下,其伸长率为150%,应变速率敏感指数m值约为0.33。  相似文献   

4.
对高体积分数碳化硅颗粒增强铝基(SiCP/Al)复合材料的拉伸强度进行了试验研究。发现在较高应力水平下经过2次卸载的试件与未做卸载的试件相比,拉伸强度变化很小,说明加载-卸载过程对材料的拉伸强度影响不大。在试验研究的基础上,使用ANSYS软件建立了有限元模型,对SiCP/Al复合材料的拉伸特性进行了仿真模拟。研究结果表明,低体积分数SiCP/Al复合材料的力学性能更接近塑性材料;而高体积分数SiCP/Al复合材料的力学性能则接近于脆性材料。拉伸强度模拟计算误差非常小,基体破坏是导致高体积分数SiCP/Al复合材料破坏的主要因素。  相似文献   

5.
压铸SiCw/Al复合材料的热物理性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对用挤压铸造法制备的SiCw/Al复合材料的热膨胀系数和热传导率进行了测试和分析。结果表明;随温度的提高,SiCw/Al复合材料和铝合金的热膨胀系数均明显增加。经人工时效处理的复合材料热膨胀系数比铸态略有降低,而经-196℃深冷处理的复合材料表现出最低的热膨胀系数。另外,随晶须含量的提高,SiCw/Al复合材料的热膨胀系数明显降低,并且热传导率有所下降。  相似文献   

6.
铸造GrP?SiCP/ZA27混杂复合材料磨损行为的研究   总被引:10,自引:1,他引:9       下载免费PDF全文
本文研究了5vo l%GrP 和10vo l%SiCP 混合增强ZA 27复合材料滑动磨损行为。分折了在不同载荷(3~ 8kg)、不同滑动速度(0. 1~ 1m/s) 下的磨损机制, 并与SiCP/ ZA 27复合材料和ZA 27基体合金作对比。试验结果表明: 混杂复合材料的耐磨性优于其它两种材料。这是因为GrP 的加入提高了材料抗粘着和层离能力; 随着载荷或滑动速度的增大, 材质的磨面形貌和磨层结构发生变化, 由此得出其磨损机制也随之变化。  相似文献   

7.
本文探索了一种制备SiCP/Al的新工艺方法,即稀释中间复合材料法,以避免通常用来制备SiCP/Al的复合铸造法中存在的浸润性差、气孔率高、存在氧化夹杂及颗粒偏聚等问题。结果表明,用该法能成功地制备10vol%和15vol%SiCP/Al复合材料,其拉伸性能比用复合铸造法制备的同样材料高10%,且气孔率显着降低,X-rays衍射和TEM分析结果表明,该工艺过程中没有发生明显的界面反应,工艺参数的选择是合理的。  相似文献   

8.
未经任何热处理的热挤压态SiCP-LY12复合材料在基体固相点附近获得超塑性变形,在温度495~510C、应变速率2×10-4s-1时,终断延伸率大于150%。对试验数据的分析表明,在前述变形参数范围内,复合材料的变形机制发生了变化,使终断延伸率显著升高,但复合材料超塑性变形过程的应变速率敏感性指数(m)在同一温度下的m值随应变速率降低而逐渐增大,其最高值并未对应于最大延伸率;同时,应力-应变曲线在通常的动态再结晶阶段后出现一个独特的应变硬化阶段,直至最终断裂。微结构观察发现,变形初期复合材料即发生动态再结晶,据此推测,前述异常硬化阶段可能与再结晶组织的长大有关。另一方面,SiCP-Al界面在变形过程中严重弱化,成为裂纹优先扩展的路径,不利于获得高的延伸率。  相似文献   

9.
SiCP混杂对C/Al浸渍成型复合材料性能的影响   总被引:5,自引:1,他引:4       下载免费PDF全文
碳纤维经混杂SiCP后用压力浸渍成型方法制备成C/Al复合材料,分析混杂的SiCP对C/Al复合材料力学性能的影响。测试了制备成的复合材料性能,并用SEM对复合材料断面组织与断口形态进行分析。结果表明,混杂的SiCP可以分隔纤维,有利浸渍,使纤维分布均匀从而提高了复合材料的性能,而用sol-gel方法涂复SiC层并混杂SiCP可获得最佳的性能。  相似文献   

10.
分别采用纳米SiC晶须(SiCW)、SiC颗粒(SiCP)及SiCW与SiCP共同增韧ZrB2陶瓷,在1950℃、20 MPa压力、氩气气氛下热压烧结制备了致密的SiC/ZrB2陶瓷材料。研究了SiCW和SiCP的添加量对于SiC/ZrB2陶瓷材料的显微结构、力学性能的影响,并分析了SiCW和SiCP对ZrB2陶瓷力学性能影响的协同作用和增韧机制。结果表明:含15 vol% SiCW 的复合材料的韧性达到8.08 MPa·m1/2,含15 vol% SiCP的复合材料的韧性达到8.515MPa·m1/2,共同添加15 vol% SiCW和15 vol%SiCP的复合材料的韧性最高达到9.03 MPa·m1/2。SiC/ZrB2复合材料强度和韧性提高的原因在于SiCW和SiCP抑制ZrB2晶粒长大,促进ZrB2的致密化,此外,SiCW和SiCP的协同作用也有助于材料韧性的提高。  相似文献   

11.
喷雾沉积法制造的铝基复合材料的超塑性   总被引:1,自引:0,他引:1       下载免费PDF全文
喷雾沉积法制造的SiCP/LY12复合材料经热压和热正挤压后,晶粒得以细化,SiCP分布的均匀性大大改善.超塑性拉伸试验结果表明:SiCP/LY12复合材料具有超塑性;变形温度、应变速率对极限延伸率和应变速率敏感性指数m值均有较大的影响.在变形温度为500℃和初始应变速率为1.0×10-3s-1时,获得的极限延伸率为345%.   相似文献   

12.
采用冷压烧结和热挤压方法制备出1. 5~5 vol % SiCP (130 nm) / Al (149~75μm) 复合材料, 并对其抗压、硬度和滑动磨擦特性进行了研究, 旨在研究引入弥散的亚微米级SiCP 对SiCP / Al 复合材料磨擦性能的影响。结果表明: 随着SiCP (130 nm) 含量的增加, 其显微硬度值也增加, 在SiCP (130 nm) 含量为1. 5 vol %和5 vol %时,SiCP (130 nm) Al 复合材料显微硬度分别为28. 4 和33. 3 ; 复合材料的抗压强度分别是170 MPa 和186 MPa ; 在较高载荷下, 随SiCP 含量增加, 复合材料的耐磨性能提高, 1. 5 vol % 和5 vol % SiCP / Al 基复合材料具有优异的滑动磨损抗力, SiCP / Al 基复合材料耐磨性优于挤压态QSn6. 520. 4 和纯Al ; 磨损表面形成Al 基体弥散分布着SiCP和孔隙的理想耐磨组织。   相似文献   

13.
温升和挤压力是影响钢管挤压过程的重要指标,利用热模拟实验获得了IN690合金的热加工本构关系,建立了IN690合金钢管热挤压过程的有限元模型.采用正交实验设计的仿真实验系统分析了坯料温度(T b=1000~1200℃)、挤压速度(v=20~200 mm/s)和模具预热温度(T d=300~500℃)对管材成形过程中温升...  相似文献   

14.
放电等离子烧结制备高导热SiC_P/Al电子封装材料   总被引:1,自引:0,他引:1       下载免费PDF全文
为了满足电子封装材料越来越高的性能要求,采用放电等离子烧结(SPS)工艺制备了SiCP/Al复合材料。研究了烧结温度和保温时间等工艺条件对SiCP/Al复合材料组织形貌和性能的影响。结果表明:采用SPS烧结,温度为700℃、保温时间为5 min时,所制备的70 vol%SiCP/Al复合材料热导率达到195.5 W(m.K)-1,与传统15%W-Cu合金相当,是Kovar合金的10倍,但密度小,仅为3.0 g.cm-3;其热膨胀系数为6.8×10-6K-1,与基板材料热膨胀系数接近;抗弯强度为410 MPa,抗拉强度为190 MPa,达到了电子封装材料对热学性能和力学性能的要求。  相似文献   

15.
高体积分数SiCP/ Al 复合材料电子封装盒体的制备   总被引:4,自引:0,他引:4       下载免费PDF全文
采用注射成型方法制备了SiCP封装盒体的预成型坯, 用压力浸渗方法将熔融铝浸渗到SiCP封装盒体的预成型坯中, 制备出含SiCP体积分数为65 %的SiCP / Al 复合材料的封装盒体。SEM 观察表明, 经过压力浸渗后SiCP / Al 复合材料组织均匀且致密化高, 室温热膨胀系数为8. 0 ×10-6 / K, 热导率接近130 W/ (m·K) , 密度为2198 g/ cm3 , 能够很好地满足电子封装的要求。   相似文献   

16.
通过热挤压复合的方式将AZ91合金引入至SiCP增强镁合金(AZ91)(SiCP/AZ91)复合材料中,制备出厚度为2 mm的AZ91-(SiCP/AZ91)复合板,研究了热轧对其显微组织和力学性能的影响规律。研究结果表明:AZ91的引入显著提高了SiCP/AZ91的轧制成形能力。与AZ91层相比,SiCP/AZ91层内晶粒尺寸小,硬度高。随轧制压下量的增加,AZ91-(SiCP/AZ91)复合板晶粒尺寸变大,析出相数量减少且尺寸增大,导致硬度呈现下降的趋势。与挤压态AZ91-(SiCP/AZ91)复合板相比,当压下量为50%时,轧制态AZ91-(SiCP/AZ91)复合板屈服强度由272 MPa提高至341 MPa,抗拉强度由353 MPa提高至404 MPa。在拉伸过程中,因SiCP与基体界面脱黏导致裂纹优先在SiCP/AZ91层内萌生和扩展,AZ91层对微裂纹扩展具有一定的阻碍作用。   相似文献   

17.
SiCP/ Ni 纳米复合材料的超塑性   总被引:1,自引:1,他引:0       下载免费PDF全文
研究了SiCP / Ni 纳米复合材料的超塑性。SiCP / Ni 采用脉冲电沉积方法获得。拉伸实验温度为410 ℃和450 ℃, 应变速率范围为8.3 ×10 -4~ 5 ×10 -2 s -1 。温度为450 ℃、应变速率为1.67 ×10 -2 s-1时, 获得的最大延伸率为836 %。采用SEM、TEM 分析了沉积态材料的表面形貌、断口形貌及变形后的组织, 并对变形机理进行了探讨。通过SiC 颗粒稳定基体组织有利于实现材料的超塑性, 低空洞体积分数有助于获得大延伸率。晶粒长大到微米尺度时, 变形机制主要是位错协调的晶界滑移和位错滑移塑性。   相似文献   

18.
SiC颗粒强韧化MoSi2复合材料   总被引:17,自引:8,他引:9       下载免费PDF全文
通过湿法混料和热压烧结工艺成功地制备了20vo1%SiCP/MoSi2复合材料,并测定了其显微组织和力学性能。结果表明:SiCP/MoSi2复合材料主要由MoSi2和SiC颗粒组成,还有少量的Mo5Si3,致密度为92.3% 。与MoSi2相比,其室温抗弯强度提高了30.6%,断裂韧性提高了53%,1200℃的抗压强度提高了44%,1400℃的抗压强度提高了53%;其硬度、弹性模量等性能有较大提高。在Al2O3和SiC对磨盘上表现出极其优异的耐磨性能。SiC颗粒对MoSi2的室温增韧、高温增强效果显著。  相似文献   

19.
通过己二酸-硫酸工艺制备了SiCP/A1合金(2A12)复合材料阳极氧化膜,研究了不同阳极氧化温度下(15~35℃)制备的SiCP/2A12复合材料阳极氧化膜温度冲击后的开裂行为及耐蚀性能。采用FE-SEM对温度冲击前后SiCP/2A12复合材料阳极氧化膜的微观形貌进行了分析,采用电化学阻抗谱(EIS)研究了冲击前后SiCP/2A12复合材料阳极氧化膜的耐腐蚀性能。结果表明:温度冲击对不同阳极氧化温度制备的SiCP/2A12复合材料阳极氧化膜影响程度不同,随着阳极氧化温度的升高,温度冲击后SiCP/2A12复合材料阳极氧化膜的裂纹密度逐渐增加。阳极氧化温度为25℃时,温度冲击后SiCP/2A12复合材料阳极氧化膜耐蚀性最好。SiCP/2A12复合材料阳极氧化膜的耐温度冲击性能优于2A12铝合金氧化膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号