首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many factors are capable of influencing the mechanism of drug release from pellets prepared by extrusion-spheronization. This study was designed to elucidate the effect of polymer type and loading and the effect of processing variables on the rate and mechanism of drug release from ibuprofen pellets coated using aqueous polymeric dispersions. Qualitative and quantitative assessment of the success of the film coating process and the quality of the resultant films is made using scanning electron microscopy and in-vitro dissolution testing. The importance of plasticizer in polymeric film formation is also discussed. Uncoated pellets containing 60, 70 and 80% ibuprofen were coated with aqueous polymeric dispersions of polymethacrylates, ethylcellulose and silicone elastomer films. The high drug loading of these pellets adds special interest to this study. Drug release from uncoated pellets appears to follow first-order kinetics. The application of a polymeric membrane to uncoated cores has the effect of retarding drug release. There appears to be a critical coating level below which core coverage by the polymer is incomplete, drug release is diffusion controlled and first-order release kinetics are observed. Above a defined polymer level, drug release appears to be membrane controlled and zero-order kinetics are observed. The presence of plasticizer in the polymeric film imparts a hydrophilic component to an otherwise hydrophobic membrane. This enhances the penetration of aqueous solvent into the pellet core during in-vitro dissolution testing, increasing the rate of drug release. Scanning electron micrographs reveal the nature of these hydrophilic pores, beneath which a fine tortuous skeletal network of drug-depleted core is exposed.  相似文献   

2.
Abstract

Many factors are capable of influencing the mechanism of drug release from pellets prepared by extrusion-spheronization. This study was designed to elucidate the effect of polymer type and loading and the effect of processing variables on the rate and mechanism of drug release from ibuprofen pellets coated using aqueous polymeric dispersions. Qualitative and quantitative assessment of the success of the film coating process and the quality of the resultant films is made using scanning electron microscopy and in-vitro dissolution testing. The importance of plasticizer in polymeric film formation is also discussed. Uncoated pellets containing 60, 70 and 80% ibuprofen were coated with aqueous polymeric dispersions of polymethacrylates, ethylcellulose and silicone elastomer films. The high drug loading of these pellets adds special interest to this study. Drug release from uncoated pellets appears to follow first-order kinetics. The application of a polymeric membrane to uncoated cores has the effect of retarding drug release. There appears to be a critical coating level below which core coverage by the polymer is incomplete, drug release is diffusion controlled and first-order release kinetics are observed. Above a defined polymer level, drug release appears to be membrane controlled and zero-order kinetics are observed. The presence of plasticizer in the polymeric film imparts a hydrophilic component to an otherwise hydrophobic membrane. This enhances the penetration of aqueous solvent into the pellet core during in-vitro dissolution testing, increasing the rate of drug release. Scanning electron micrographs reveal the nature of these hydrophilic pores, beneath which a fine tortuous skeletal network of drug-depleted core is exposed.  相似文献   

3.
The effect of spheronization method on drug release from coated spheres may be evaluated by determining the drug release rate, the critical coating level and the release mechanism. Drug release is faster from pan beads than from marumerizer beads at the same coating level. An equation is proposed which indicates that the critical coating level is inversely proportional to sphere size and sphere density, which in turn results from the different spheronization techniques. From the calculation, the critical coating levels for 14/16 mesh cuts of marumerizer beads and pan beads are 12% and 18%, respectively. Disintegration, pore-control and barrier control are involved in the release mechanisms of drugs from coated pan beads.  相似文献   

4.
Controlled release beads containing chlorpheniramine maleate, coated with Eudragit RL and RS, were prepared using the Wurster process. The effect of membrane thickness, polymer ratio of the coating material, agitation speed and pH of the dissolution medium on drug release were investigated using the USP dissolution basket method. The in vitro release of drug was described adequately by a previously published equation. The release rate constant (K) was dependent on the membrane thickness, the polymer ratio and pH of the dissolution medium. On the other hand, agitation speed used in this study did not have any influence on the release of the drug.  相似文献   

5.
Abstract

The effect of spheronization method on drug release from coated spheres may be evaluated by determining the drug release rate, the critical coating level and the release mechanism. Drug release is faster from pan beads than from marumerizer beads at the same coating level. An equation is proposed which indicates that the critical coating level is inversely proportional to sphere size and sphere density, which in turn results from the different spheronization techniques. From the calculation, the critical coating levels for 14/16 mesh cuts of marumerizer beads and pan beads are 12% and 18%, respectively. Disintegration, pore-control and barrier control are involved in the release mechanisms of drugs from coated pan beads.  相似文献   

6.
Abstract

Controlled release beads containing chlorpheniramine maleate, coated with Eudragit RL and RS, were prepared using the Wurster process. The effect of membrane thickness, polymer ratio of the coating material, agitation speed and pH of the dissolution medium on drug release were investigated using the USP dissolution basket method. The in vitro release of drug was described adequately by a previously published equation. The release rate constant (K) was dependent on the membrane thickness, the polymer ratio and pH of the dissolution medium. On the other hand, agitation speed used in this study did not have any influence on the release of the drug.  相似文献   

7.
Drug-containing nonpareil beads were coated in a fluidized bed with a commercial ethylcellulose pseudolatex, Aquacoat. The drug release was investigated as a function of curing conditions (curing time and temperature) for a hydrophilic and lipophilic drug (chlorpheniramine maleate and ibuprofen) at different levels of plasticizer (triethyl citrate). Curing of coated beads at elevated temperatures immediately after the coating process significantly changed the drug release pattern. Both a retardation and an enhancement in drug release were seen, with the extent being dependent on the type of drug and curing conditions. With chlorpheniramine maleate, a drug with low affinity for the ethylcellulose coating, a curing step was necessary at intermediate plasticizer levels to obtain good film formation and a limiting drug release pattern, while the use of higher plasticizer levels eliminated the need for a curing step. With ibuprofen, a lipophilic drug with high solubility in the ethylcellulose coating, drug crystals were apparent on the bead surface after curing. Curing of ibuprofen beads as a function of time initially decreased but then substantially increased the drug release as a result of drug diffusion across the ethylcellulose membrane with subsequent crystallization on the bead surface. An intermediate seal coat reduced the diffusion of the drug into the ethylcellulose coating.  相似文献   

8.
Different batches of slow release mebeverine-HCl beads were prepared by pan coating technique using different release retarding polymers viz Eudragit RL100, Eudragit RS100 and Ethyl cellulose. The thickness of the coats was controlled by changing the amounts of the added polymers. Pre- and overcoating of the beads with bees wax was also carried out. Mixtures of pre-waxed Eudragit RS100 coated and uncoated beads in different ratios were prepared to control both drug content and release.

Dissolution profiles of mebeverine HCl from the prepared beads were investigated using USP XX rotating basket method. Prolonged release of mebeverine-HCl was obtained from different batches of the coated beads with the advantage of no initial dumping of the water soluble drug. The release of mebeverine-HCl from the beads coated with acrylic resins and ethyl cellulose as well as waxed acrylic resins coated beads was diffusion controlled according to Higuchi model. Beads coated with ethyl cellulose showed a different release pattern when pre-or overcoated with wax. By altering the ratios of prewaxed Eudragit Rs100 coated and uncoated beads in formulated mixtures, it was possible to control both mebeverine-HCl content and release rate.  相似文献   

9.
Different batches of slow release mebeverine-HCl beads were prepared by pan coating technique using different release retarding polymers viz Eudragit RL100, Eudragit RS100 and Ethyl cellulose. The thickness of the coats was controlled by changing the amounts of the added polymers. Pre- and overcoating of the beads with bees wax was also carried out. Mixtures of pre-waxed Eudragit RS100 coated and uncoated beads in different ratios were prepared to control both drug content and release.

Dissolution profiles of mebeverine HCl from the prepared beads were investigated using USP XX rotating basket method. Prolonged release of mebeverine-HCl was obtained from different batches of the coated beads with the advantage of no initial dumping of the water soluble drug. The release of mebeverine-HCl from the beads coated with acrylic resins and ethyl cellulose as well as waxed acrylic resins coated beads was diffusion controlled according to Higuchi model. Beads coated with ethyl cellulose showed a different release pattern when pre-or overcoated with wax. By altering the ratios of prewaxed Eudragit Rs100 coated and uncoated beads in formulated mixtures, it was possible to control both mebeverine-HCl content and release rate.  相似文献   

10.
Abstract

Drug-containing nonpareil beads were coated in a fluidized bed with a commercial ethylcellulose pseudolatex, Aquacoat. The drug release was investigated as a function of curing conditions (curing time and temperature) for a hydrophilic and lipophilic drug (chlorpheniramine maleate and ibuprofen) at different levels of plasticizer (triethyl citrate). Curing of coated beads at elevated temperatures immediately after the coating process significantly changed the drug release pattern. Both a retardation and an enhancement in drug release were seen, with the extent being dependent on the type of drug and curing conditions. With chlorpheniramine maleate, a drug with low affinity for the ethylcellulose coating, a curing step was necessary at intermediate plasticizer levels to obtain good film formation and a limiting drug release pattern, while the use of higher plasticizer levels eliminated the need for a curing step. With ibuprofen, a lipophilic drug with high solubility in the ethylcellulose coating, drug crystals were apparent on the bead surface after curing. Curing of ibuprofen beads as a function of time initially decreased but then substantially increased the drug release as a result of drug diffusion across the ethylcellulose membrane with subsequent crystallization on the bead surface. An intermediate seal coat reduced the diffusion of the drug into the ethylcellulose coating.  相似文献   

11.
The aim of this study was to characterize and evaluate a modified release, multiparticulate tablet formulation consisting of placebo beads and drug-loaded beads. Acetaminophen (APAP) bead formulations containing ethylcellulose (EC) from 40-60% and placebo beads containing 30% calcium silicate and prepared using 0-20% alcohol were developed using extrusion-spheronization and studied using a central composite experimental design. Particle size and true density of beads were measured. Segregation testing was performed using the novel ASTM D6940-04 method on a 50:50 blend of uncoated APAP beads (60%EC) : calcium silicate placebo beads (10% alcohol). Tablets were prepared using an instrumented Stokes-B2 rotary tablet press and evaluated for crushing strength and dissolution rate. Compared with drug beads (60%EC), placebo beads (10% alcohol) were smaller but had higher true densities: 864.8 mum and 1.27 g/cm(3), and 787.1 mum and 1.73 g/cm(3), respectively. Segregation testing revealed that there was approximately a 20% difference in drug content (as measured by the coefficient of variation) between initial and final blend samples. Although calcium silicate-based placebo beads were shown to be ineffective cushioning agents in blends with Surelease(R)-coated APAP beads, they were found to be very compactibile when used alone and gave tablet crushing strength values between 14 and 17 kP. The EC in the APAP bead matrix minimally suppressed the drug release from uncoated beads (t(100%) = 2 h). However, while tablets containing placebo beads reformulated with glycerol monostearate (GMS) showed a slower release rate (t(60%)= 5 h) compared with calcium silicate-based placebos, some coating damage ( approximately 30%) still occurred on compression as release was faster than coated APAP beads alone. While tablets containing coated drug beads can be produced with practical crushing strengths (>8 kP) and low compression pressures (10-35 MPa), dissolution studies revealed that calcium silicate-based placebos are ineffective as cushioning agents. Blend segregation was likely observed due to the particle size and the density differences between APAP beads and calcium silicate-based placebo beads; placebo bead percolation can perhaps be minimized by increasing their size during the extrusion-spheronization process. The GMS- based placebos offer greater promise as cushioning agents for compacted, coated drug beads; however, this requires an optimized compression pressure range and drug bead : placebo bead ratio (i.e., 50:50).  相似文献   

12.
The objectives of this work was preparation and evaluation of the mucoadhesive elementary osmotic pump tablets of trimetazidine hydrochloride to achieve desired controlled release action and augmentation of oral drug absorption. The drug-loaded core tablets were prepared employing the suitable tableting excipients and coated with polymeric blend of ethyl cellulose and hydroxypropyl methylethylcellulose E5 (4:1). The prepared tablets were characterized for various quality control tests and in vitro drug release. Evaluation of drug release kinetics through model fitting suggested the Fickian mechanism of drug release, which was regulated by osmosis and diffusion as the predominant mechanism. Evaluation of mucoadhesion property using texture analyzer suggested good mucoadhesion potential of the developed osmotic systems. Solid state characterization using Fourier-transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction spectroscopy confirmed the absence of any physiochemical incompatibilities between drug and excipients. Scanning electron microscopy analysis showed the smooth surface appearance of the coated tablets with intact polymeric membrane without any fracture. In vivo pharmacokinetic studies in rabbits revealed 3.01-fold enhancement in the oral bioavailability vis-à-vis the marketed formulation (Vastarel MR®). These studies successfully demonstrate the bioavailability enhancement potential of the mucoadhesive elementary osmotic pumps as novel therapeutic systems for other drugs too.  相似文献   

13.
Furosemide-loaded calcium alginate (ALG), calcium alginate-polyethyleneimine (ALG-PEI) and alginate-coated ALG-PEI (ALG-PEI-ALG) beads were prepared by ionotropic/polyelectrolyte complexation method to achieve controlled release of the drug. Effects of several formulation factors on the characteristics of the beads were investigated. Although variation in formulation factors did not influence the drug-loading efficiency (DLE) of ALG beads, rapid release of the drug in simulated intestinal fluid (SIF) could not be prevented. PEI treatment of ALG beads, however, prolonged the drug release considerably. Ionic interaction, as appeared from FTIR studies, between alginate and PEI led to the formation of polyelectrolyte complex membrane, the thickness of which was dependent on the conditions of PEI treatment as demonstrated by scanning electron microscopy (SEM). The membrane acted as a physical barrier to drug release from ALG-PEI beads. Alginate coating of ALG-PEI beads further prolonged the release of the drug by increasing membrane thickness and reducing swelling of the beads possibly by blocking the surface pores. Differential scanning calorimetry (DSC) study indicated that drug was not degraded by PEI treatment. The release data from ALG-PEI beads showed a good fit in power law expression, whereas the release data from ALG-PEI-ALG beads were found to fit in modified power law expression, and the mechanism of drug release changed from super case II transport to nearly Fickian transport, depending on the degree of gelation and formation of polyelectrolyte complex membrane.  相似文献   

14.
Furosemide-loaded calcium alginate (ALG), calcium alginate-polyethyleneimine (ALG-PEI) and alginate-coated ALG-PEI (ALG-PEI-ALG) beads were prepared by ionotropic/polyelectrolyte complexation method to achieve controlled release of the drug. Effects of several formulation factors on the characteristics of the beads were investigated. Although variation in formulation factors did not influence the drug-loading efficiency (DLE) of ALG beads, rapid release of the drug in simulated intestinal fluid (SIF) could not be prevented. PEI treatment of ALG beads, however, prolonged the drug release considerably. Ionic interaction, as appeared from FTIR studies, between alginate and PEI led to the formation of polyelectrolyte complex membrane, the thickness of which was dependent on the conditions of PEI treatment as demonstrated by scanning electron microscopy (SEM). The membrane acted as a physical barrier to drug release from ALG-PEI beads. Alginate coating of ALG-PEI beads further prolonged the release of the drug by increasing membrane thickness and reducing swelling of the beads possibly by blocking the surface pores. Differential scanning calorimetry (DSC) study indicated that drug was not degraded by PEI treatment. The release data from ALG-PEI beads showed a good fit in power law expression, whereas the release data from ALG-PEI-ALG beads were found to fit in modified power law expression, and the mechanism of drug release changed from super case II transport to nearly Fickian transport, depending on the degree of gelation and formation of polyelectrolyte complex membrane.  相似文献   

15.
Furosemide-loaded calcium alginate (ALG), calcium alginate-polyethyleneimine (ALG-PEI) and alginate-coated ALG-PEI (ALG-PEI-ALG) beads were prepared by ionotropic/polyelectrolyte complexation method to achieve controlled release of the drug. Effects of several formulation factors on the characteristics of the beads were investigated. Although variation in formulation factors did not influence the drug-loading efficiency (DLE) of ALG beads, rapid release of the drug in simulated intestinal fluid (SIF) could not be prevented. PEI treatment of ALG beads, however, prolonged the drug release considerably. Ionic interaction, as appeared from FTIR studies, between alginate and PEI led to the formation of polyelectrolyte complex membrane, the thickness of which was dependent on the conditions of PEI treatment as demonstrated by scanning electron microscopy (SEM). The membrane acted as a physical barrier to drug release from ALG-PEI beads. Alginate coating of ALG-PEI beads further prolonged the release of the drug by increasing membrane thickness and reducing swelling of the beads possibly by blocking the surface pores. Differential scanning calorimetry (DSC) study indicated that drug was not degraded by PEI treatment. The release data from ALG-PEI beads showed a good fit in power law expression, whereas the release data from ALG-PEI-ALG beads were found to fit in modified power law expression, and the mechanism of drug release changed from super case II transport to nearly Fickian transport, depending on the degree of gelation and formation of polyelectrolyte complex membrane.  相似文献   

16.
The main objective of this study was to prepare pellets in a Roto-processor using the powder-layering process onto inert nonpareils and to evaluate the applicability of the Roto-processor setup for film coating. Nonpareils were loaded with phenylpropanolamine hydrochloride and coated with ethyl cellulose polymeric dispersion (Surelease®). The drug loading was analyzed to test the eficiency of powder layering. The effect of polymer level on the drug release from the pellets and the pore size distribution in the membrane were studied. The yields for powder layering were greater than 90%. The dissolution studies on the Blm-coated pellets showed sustained release over a 10-hr period. The time required for 50% of drug release increased and the mean pore diameter decreased with an increase in polymer coating.  相似文献   

17.
Purpose: In a fluid-bed coating machine, the coating solutions are normally sprayed using a manually controlled peristaltic pump. This study provides a process where two or more coating solutions can be sprayed consecutively using two or more syringe pumps controlled by a computer, to form multiple layers. In this process, the spraying parameters can be controlled easily from a computer. Methods: Propranolol HCl was used as a model drug. Nine different drug-loaded controlled release coated beads were prepared by using a combination of ethylcellulose and/or chitosan solutions. The pulse-coated beads were prepared by changing the spray rate and/or volume of the polymer solutions. Results: There was a fourfold increase (18 versus 75 minutes) in lag time when the same amount of ethylcellulose (4 g) was dissolved in 100 mL of ethanol instead of 160 mL. When the same amount of drug and ethylcellulose solution was applied on the acrylic coated beads as multiple layers coating, the lag time decreased to only 6 minutes. Similarly, the 50% drug release time also decreased significantly. Conclusion: An overall comparison of the dissolution profiles showed that drug release from these coated beads was changed significantly when the sequence of the drug and polymer layers was changed.  相似文献   

18.
An aqueous based polymeric coating system, polydimethyl-siloxane elastomer latex, was employed to coat acetaminophen tablets. Drug release characteristics due to this polymer coating were monitored by in-vitro dissolution tests. It was found that heat treatment of the coating and the desiccation pretreatment significantly changed the drug release profiles compared to untreated, coated tablets. The slowest drug release rate was obtained by desiccating the coated tablets for 24 hours or more followed by heat treatment at 40°C for at least 4.5 hours. Rupturing of the coating layer during dissolution testing was observed only if the curing process was not utilized. As expected, drug released at a given time was inversely proportional to the coating thickness.  相似文献   

19.
The aim of this study was to characterize and evaluate a modified release, multiparticulate tablet formulation consisting of placebo beads and drug-loaded beads. Acetaminophen (APAP) bead formulations containing ethylcellulose (EC) from 40–60% and placebo beads containing 30% calcium silicate and prepared using 0–20% alcohol were developed using extrusion–spheronization and studied using a central composite experimental design. Particle size and true density of beads were measured. Segregation testing was performed using the novel ASTM D6940-04 method on a 50:50 blend of uncoated APAP beads (60%EC) : calcium silicate placebo beads (10% alcohol). Tablets were prepared using an instrumented Stokes-B2 rotary tablet press and evaluated for crushing strength and dissolution rate. Compared with drug beads (60%EC), placebo beads (10% alcohol) were smaller but had higher true densities: 864.8 μm and 1.27 g/cm3, and 787.1 μm and 1.73 g/cm3, respectively. Segregation testing revealed that there was approximately a 20% difference in drug content (as measured by the coefficient of variation) between initial and final blend samples. Although calcium silicate-based placebo beads were shown to be ineffective cushioning agents in blends with Surelease®-coated APAP beads, they were found to be very compactibile when used alone and gave tablet crushing strength values between 14 and 17 kP. The EC in the APAP bead matrix minimally suppressed the drug release from uncoated beads (t100%?=?2 h). However, while tablets containing placebo beads reformulated with glycerol monostearate (GMS) showed a slower release rate (t60%= 5 h) compared with calcium silicate-based placebos, some coating damage (~30%) still occurred on compression as release was faster than coated APAP beads alone. While tablets containing coated drug beads can be produced with practical crushing strengths (>8 kP) and low compression pressures (10–35 MPa), dissolution studies revealed that calcium silicate-based placebos are ineffective as cushioning agents. Blend segregation was likely observed due to the particle size and the density differences between APAP beads and calcium silicate-based placebo beads; placebo bead percolation can perhaps be minimized by increasing their size during the extrusion–spheronization process. The GMS- based placebos offer greater promise as cushioning agents for compacted, coated drug beads; however, this requires an optimized compression pressure range and drug bead : placebo bead ratio (i.e., 50:50).  相似文献   

20.
Abstract

An aqueous based polymeric coating system, polydimethyl-siloxane elastomer latex, was employed to coat acetaminophen tablets. Drug release characteristics due to this polymer coating were monitored by in-vitro dissolution tests. It was found that heat treatment of the coating and the desiccation pretreatment significantly changed the drug release profiles compared to untreated, coated tablets. The slowest drug release rate was obtained by desiccating the coated tablets for 24 hours or more followed by heat treatment at 40°C for at least 4.5 hours. Rupturing of the coating layer during dissolution testing was observed only if the curing process was not utilized. As expected, drug released at a given time was inversely proportional to the coating thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号