共查询到20条相似文献,搜索用时 15 毫秒
1.
SO_4~(2-)/SiO_2-ZrO_2复合固体超强酸催化α-蒎烯水合反应 总被引:1,自引:0,他引:1
以硫酸锆和硅胶为主要原料在水热条件下合成了SiO2 ZrO2复合体,晶化温度150℃,晶化时间24h。用c(H2SO4)=0 25mol/L水溶液处理焙烧过的SiO2 ZrO2复合体,经焙烧后制得SO2-4/SiO2 ZrO2复合固体超强酸。用FTIR、XRD、BET及NH3-TPD等技术表征了其结构。结果表明,该催化剂存在超强酸中心,比表面积高达203 7m2/g,孔径为16 6nm,孔容为0 8cm3/g,但不具有中孔分子筛的特征结构。将SO2-4/SiO2 ZrO2复合固体超强酸用于催化α 蒎烯水合反应,α 蒎烯的转化率接近100%,对α 松油醇的选择性达50%;该催化剂重复使用5次后,α 蒎烯的转化率由开始的100%变为83 5%,对α 松油醇的选择性仍为50%,表明该催化剂具有良好的重复使用性能。 相似文献
2.
引入镍离子制备出新型固体超强酸Ni/SO42--SnO2,以该固体酸催化α-蒎烯水合反应制备α-松油醇,考察影响水合反应的因素,得到水合反应最适宜的条件为:n(α-蒎烯)∶n(一氯乙酸)∶n(H2O)=1∶1∶2,反应温度70°C,反应时间10h,催化剂用量为α-蒎烯质量的6%。在该反应条件下,α-蒎烯转化率为100%,α-松油醇选择性为73.3%;与未添加Ni的固体超强酸SO24-/SnO2相比表明,Ni的引入能明显提高催化剂在水合反应中的活性和选择性。 相似文献
3.
4.
总结了近20年来国内外催化α-蒎烯水合反应过程中催化剂的应用和意义,以及各类催化剂的优缺点,并在总结的基础上提出了展望。 相似文献
5.
6.
7.
8.
9.
松节油的主要成分是α-蒎烯和β-蒎烯,广泛地应用于合成香料、农药、医药及其它工业中。以松节油为原料合成的松油醇具有稳定的紫丁香气,价格低廉,应用于多种日用香精中,同时还可用作浮选剂、溶剂和消毒剂等。因此,在酸的作用下,蒎烯水合合成松油醇具有重要的工业意义。 相似文献
10.
α-蒎烯水合生成松油醇的热力学分析 总被引:2,自引:0,他引:2
采用Benson基团贡献法、Joback基团贡献法、马沛生基团贡献法等估算方法对相应的热力学数据进行了估算,计算了不同温度下反应体系的焓变、自由能变化及平衡常数。结果表明:该反应体系属于放热反应,吉布斯自由能变化为负值,在298.15-373.15K的范围内,平衡常数值较大。该热力学分析将为该反应的试验研究以及工业化生产提供了一定的理论依据。 相似文献
11.
采用共沸除氯法制备SO42-/SnO2固体超强酸,将其应用于α-蒎烯异构化。该催化剂的最佳制备条件:浸渍液硫酸浓度为1.5 mol/L,焙烧温度为550 ℃下焙烧3.0 h;反应最佳条件为:反应温度为110 ℃下反应3.0 h,催化剂用量为松节油中α-蒎烯质量分数的5%;在该条件下,α-蒎烯转化率为100%,莰烯选择性为64.85%。采用FT-IR、XRD、TG-DTA、SEM、BET对催化剂进行表征。结果表明:相同制备条件下,共沸除氯法制备的SO42-/SnO2较溶胶凝胶法与沉淀法制备的SO42-/SnO2催化活性高,超强酸中心多,颗粒小且均匀,团聚少。 相似文献
12.
制备了一种中孔分子筛Zr/Mo-MCM-41。采用X射线衍射(XRD)、红外(FT-IR)和氨吸附-脱附(NH3-TPD)对其结构和酸强度进行了表征。结果表明,Zr/Mo-MCM-41中孔分子筛具有一定的长程有序性、结晶度和较强的酸性。将其用于催化α-蒎烯水合反应,详细考察了催化剂的用量、反应物配比、反应温度和反应时间等因素对反应结果的影响,得到了较佳的反应条件:催化剂1.5 g,α-蒎烯0.15 mol ,n(α-蒎烯)∶n(氯乙酸)∶n(水)=1∶1∶3,反应温度60 ℃,反应时间8~10 h。在该反应条件下,α-蒎烯转化率为96.9%,α-松油醇选择性为57.2%。还考察了催化剂的重复使用性能。 相似文献
13.
采用溶胶-凝胶法制得SiO2-ZrO2基质材料,然后通过浸渍法制备SO2-4/SiO2-ZrO2固体超强酸.对SO2-4/SiO2-ZrO2固体超强酸催化乳酸乙酯的合成反应进行了研究.适宜的反应条件为:稀硫酸浸泡16 h,反应温度80 ℃,反应时间4 h,催化剂用量为每摩尔乳酸1.5 g.反应酯化率达92.7%. 相似文献
14.
固体超强酸TiO2/SO42-催化合成α-萘乙酸甲酯 总被引:3,自引:0,他引:3
以固体超强酸TiO2/SO4^2-为催化剂,研究了α-萘乙酸与甲醇的酯化反应,探讨了催化剂种类、用量及活化温度等反应条件,发现固体超强酸TiO2/SO4^2-对α-萘乙酸与甲醇的酯化反应具有较高的催化活性,并使后处理简化。较佳反应条件为:α-萘乙酸与甲醇的摩尔比为1:5.3,固体超强酸TiO2/SO4^2-活化温度为450℃~500℃,活化时间3h,用量为α-萘乙酸用量的3%,反应时间6h,反应温度74.5℃~76℃。在试验筛选的最佳条件下,酯产率超过96%,精酯收率达83%。 相似文献
15.
以固体超强酸SO2-4-ZrO2-MoO3为催化剂合成α-萘乙酸甲酯,考察了MoCO3含量、焙烧温度、焙烧时间等制备条件对催化剂性能的影响.同时还讨论了酯化反应时间、催化剂用量以及原料醇酸质量之比对酯化率的影响.在优惠反应条件下,α-萘乙酸甲酯的转化率为83.8%. 相似文献
16.
采用共沸除氯法制备SO42-/SnO2固体超强酸,将其应用于α-蒎烯异构化.该催化剂的最佳制备条件:浸渍液硫酸浓度为1.5 mol/L,焙烧温度550℃,焙烧时间3.0h;反应最佳条件为:反应温度110℃,反应时间3.0h,催化剂用量为松节油中α-蒎烯质量的5%;在该条件下,α-蒎烯转化率为100%,莰烯选择性为64.85%.采用FTIR、XRD、TG-DTA、SEM、BET对催化剂进行了表征.结果表明:相同制备条件下,共沸除氯法制备的SO42-/SnO2较溶胶凝胶法与沉淀法制备的SO42-/SnO2催化活性高,超强酸中心多,颗粒小且均匀,团聚少. 相似文献
17.
18.
SO2-4/MxOy固体超强酸催化合成1,4-二氧六环 总被引:1,自引:0,他引:1
以乙二醇为原料,采用颗粒型SO2-4/MxOy固体超强酸催化剂,在常压、气相条件下,固定床催化合成了1,4-二氧六环;同时考察了不同反应温度、原料配比、进料速度等条件对催化反应的影响,并对上述影响因素进行了探讨.产品经气相色谱,红外光谱及质谱分析,结果表明,原料在260℃温度条件下,以进料流速为0.12 mL/min为最佳反应条件,在该实验条件下,1,4-二氧六环的生成产率达到60%~70%左右.该合成工艺应用固体超强酸催化剂具有较高的催化活性、化学稳定性好、无环境污染,是工业生产1,4-二氧六环较理想方法,具有良好的工业生产前景. 相似文献
19.
采用复合载体技术引入到固体超强酸中,制备出负载型固体超强酸.催化合成乙酸丁酯的正交实验研究结果表明,浸渍液硫酸浓度对催化剂活性影响晟大,其次是焙烧温度和活性成分ZrO2负载量.当负载量0.35g/g,硫酸浓度0.50mol/L,焙烧温度600℃条件下,催化剂活性远比液体硫酸高;反应仅1h乙酸转化率达到96.5%. 相似文献
20.
以乙酸和异戊醇为原料,固体超强酸SO2-4/Sb2O3/SiO2作催化剂,催化合成乙酸异戊酯.考察了醇酸比、催化剂用量、反应温度与反应时间对酯化反应的影响.结果表明,乙酸异戊酯的最佳合成条件为:n(异戊醇) ∶n(乙酸)=1.4 ∶1,催化剂用量为1.2 g,反应时间4 h,反应温度108~112 ℃,在此条件下酯化率可达95.7%.并用IR手段对产品进行了确证. 相似文献