首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dissolution rates of alkaline rocks, including wollastonite (CaSiO3), olivine (Mg2SiO4), and phlogopite (KMg3AlSi3O10(OH)2), with high pressure aqueous CO2 solution were measured to examine the feasibility of CO2 fixation via carbonation. Influence of solid/liquid ratio (1.0–10 g/250 mL), temperature (303–353 K), and CO2 pressure (1.0–3.0 MPa) on the extraction rates of calcium or magnesium ions was investigated. Under the experimental conditions studied, the calcium ion extraction rate from wollastonite was the highest among the three rock samples studied. The calcium concentration reached about 120 mg/L, and about 12% of the calcium in wollastonite sample was extracted after 60 min at 353 K with 1.0 MPa CO2. The calcium and magnesium extraction ratios from the alkaline rocks were much lower than those from waste concrete powder. Increasing the extraction time and temperature would be an effective way to promote calcium extraction from wollastonite.  相似文献   

2.
Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation. However, the presence of trace contaminants, i.e., sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area. Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO2 and O2 is produced, the possibility exists to use this stream in oxy-firing of additional fuel.From this research, a novel concept for efficiently producing a carbon dioxide rich effluent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossil-fuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide. A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.  相似文献   

3.
In this article, we report the results from a study of olivine dissolution kinetics under operating conditions suitable for ex situ aqueous mineral carbonation for CO2 storage. We studied the effect of oxalate and citrate ions on the dissolution of gem-quality San Carlos olivine (Mg1.82Fe0.18SiO4). Flow-through experiments were performed at 90 °C and 120 °C, at fCO2 between 4 and 81 bar, with a solution containing either sodium oxalate or sodium citrate in a molality range between 10−3 and 10−1. The pH was varied between 2 and 7 by adding HCl, LiOH, and adjusting fCO2. At all investigated temperatures and for pH values in a broad range, both sodium oxalate and sodium citrate increased dissolution rate with the strongest effect up to one order of magnitude in presence of 0.1 m of oxalate, at 120 °C, and above pH 5. The enhancement effect was primarily ascribed to the oxalate or citrate ions that are the dominant species in this pH range. The overall dissolution process was described using the population balance equation (PBE) coupled with a mass balance equation to account for the evolution of the particle size distribution (PSD) of olivine. Far from equilibrium conditions for dissolution were established in all the experiments in order to achieve a surface-reaction controlled mechanism. We described the reaction with a surface complexation model, which assumes adsorption of a proton and of an oxalate (citrate) ions (proton and oxalate) on adjacent sites in order to enhance dissolution, and we derived a dissolution rate equation in presence of oxalate:where r? is the specific dissolution rate commonly used in absence of organic compounds, and KH, KX, and β are thermodynamic and kinetic parameters. The values of these parameters have been estimated from the experimental data and the agreement between the model results and the experiments is very good.  相似文献   

4.
Innovative off-the-shelf CO2 capture approaches are burgeoning in the literature, among which, ionic liquids seem to have been omitted in the recent Intergovernmental Panel on Climate Change (IPCC) survey. Ionic liquids (ILs), because of their tunable properties, wide liquid range, reasonable thermal stability, and negligible vapor pressure, are emerging as promising candidates rivaling with conventional amine scrubbing. Due to substantial solubility, room-temperature ionic liquids (RTILs) are quite useful for CO2 separation from flue gases. Their absorption capacity can be greatly enhanced by functionalization with an amine moiety but with concurrent increase in viscosity making process handling difficult. However this downside can be overcome by making use of supported ionic-liquid membranes (SILMs), especially where high pressures and temperatures are involved. Moreover, due to negligible loss of ionic liquids during recycling, these technologies will also decrease the CO2 capture cost to a reasonable extent when employed on industrial scale. There is also need to look deeply into the noxious behavior of these unique species. Nevertheless, the flexibility in synthetic structure of ionic liquids may make them opportunistic in CO2 capture scenarios.  相似文献   

5.
The experimental determination of high-pressure phase equilibria is often the only suitable method to obtain reliable data because high-pressure phase behavior is complex and difficult to predict. This contribution gives a brief classification of applied experimental methods. A new high-pressure apparatus is described, which can be used for phase-equilibrium measurements with different experimental methods, namely the analytical-isothermal method, the synthetic-isothermal method as well as the non-visual- and the visual-synthetic method. The different techniques have been tested for the measurement of the phase behavior of systems containing CO2 + styrene and CO2 + vinyl acetate. The measured data were compared with data from literature and discussed in terms of accuracy, advantages and drawbacks of the applied methods.  相似文献   

6.
The energy penalty associated with solvent based capture of CO2 from power station flue gases can be reduced by incorporating process flow sheet modifications into the standard process. A review of modifications suggested in the open and patent literature identified several options, primarily intended for use in the gas processing industry. It was not immediately clear whether these options would have the same benefits when applied to CO2 capture from near atmospheric pressure combustion flue gases. Process flow sheet modifications, including split flow, rich split, vapour recompression, and inter-stage cooling, were therefore modelled using a commercial rate-based simulation package. The models were completed for a Queensland (Australia) based pilot plant running on 30% MEA as the solvent. The preliminary modelling results showed considerable benefits in reducing the energy penalty of capturing CO2 from combustion flue gases. Further work will focus on optimising and validating the most relevant process flow sheet modifications in a pilot plant.  相似文献   

7.
A carbon dioxide (CO2) soluble compound (cholesterol) was successfully precipitated either by rapid expansion of SCCO2 solutions (RESS process, acronym for Rapid Expansion of Supercritical Solution), or from methylene chloride solutions by antisolvent precipitation (SAS-process, acronym for Supercritical Antisolvent process). The same fluid was thus used either as a solvent or as an antisolvent to precipitate cholesterol. Performances of RESS and SAS were compared through the analysis of the particle characteristics and production rates. Differences were related to supersaturation and time scale of nucleation/growth involved in both processes. Polydispersity, large size and elongated shape were characteristics of particles produced by SAS, especially when experiments were performed under conditions of total miscibility of CO2 and organic solvent. Conditions where vapor-liquid equilibrium exists promoted a confinement of the growth that consequently reduced the final particle size. RESS, by comparison, produced smaller and monodispersed particles. Production of small particles is a key advantage for RESS, but lower production rates and yield might be disadvantages. The combination of the two processes offers the opportunity of tunable sizing of powder, switching from a large production of particles ranging from 10 to 100 μm, to a limited production of fine crystals below 10 μm.  相似文献   

8.
CO_2是造成温室效应的主要气体,作为碳基能源使用的末端形态,CO_2也是种重要的基础碳源。因此,将CO_2转化为能源产品可以快速实现碳的循环,对环境与能源领域意义重大。介绍了CO_2的排放、回收以及资源化利用现状,从催化剂体系、反应机理、合成工艺以及工业化现状等方面系统地介绍了CO_2甲烷化的发展。针对H2供给对CO_2甲烷化应用的限制,分析了电解水制氢再与CO_2进行甲烷化反应的电制气(Pt G)技术的发展现状、工艺路线及其经济性,讨论了该技术在我国应用的可行性。提出随着CO_2捕集与新能源相关技术的发展,Pt G技术会更加成熟,将有望成为未来CO_2资源化利用的重要形式。  相似文献   

9.
Poly(vinyl acetate) (PVAc) is miscible with CO2 over a broad range of molecular weights at 298 K. The cloud-point pressures needed to dissolve ∼5 wt% poly(methyl acrylate) (PMA) at 298 K are significantly greater than those needed to dissolve PVAc, even though a PMA repeat group has the same number of carbon, hydrogen, and oxygen atoms as in PVAc. This large difference in dissolution pressures is attributed to the lack of accessibility of the carbon dioxide to the carbonyl group in PMA. In addition, experimental data for poly(dimethyl siloxane) (PDMS) copolymers with readily accessible side groups suggest that an acetate group is slightly more CO2-philic than an acrylate group. PVAc is more CO2-soluble than other hydrocarbon homopolymers, including poly(propylene oxide) (PPO) and poly(lactide) (PLA). However, PVAc is significantly less miscible with CO2 than PDMS and poly(fluoroalkyl acrylate) (PFA).  相似文献   

10.
The effects of carbon dioxide on the dehydrogenation of C3H8 to produce C3H6 were investigated over several Cr2O3 catalysts supported on Al2O3, active carbon and SiO2. Carbon dioxide exerted promoting effects only on SiO2-supported Cr2O3 catalysts. The promoting effects of carbon dioxide over a Cr2O3/SiO2 catalyst were to enhance the yield of C3H6 and to suppress the catalyst deactivation.  相似文献   

11.
The most commonly used process for the CO2 capture is absorption by means of chemical solvents such as alkanolamines. This consolidated technology can be applied to CO2 removal from natural gas, refinery gas, and exhaust gas of power plants.This paper focuses on CO2 capture from exhaust gas by absorption with monoethanolamine (MEA).A commercial simulation software, namely Aspen Plus®, is used, with Electrolyte-NRTL thermodynamic package where ad hoc parameters, obtained from regression of experimental solubility data for the system CO2-MEA-H2O, have been implemented.The comparison among different schemes is based on energy saving. Both the reboiler heat duty and the total equivalent work (which sums up every work and heat contribution in the purification section) are considered as criteria for comparison.  相似文献   

12.
Raw and demineralized lignite samples were pyrolyzed from 773 to 1673 K to generate chars. The chars were characterized with Raman spectroscopy for the structure evolution. The reactivities of the chars reacting with CO2 and NO were measured with thermogravimetric analysis. The derived reactivity indexes were correlated with the treatment temperature and the Raman structural parameters to demonstrate the applicability of Raman spectroscopy for evaluation of the reactivities of char CO2 gasification and char-NO reaction. It was found that char microstructure evolution with the treatment temperature could be represented by Raman band area ratios. ID1/IG and IG/IALL represented the evolution of the ordered carbon structure while the combination of ID3/(IG + ID2 + ID3) reflected the evolution of the amorphous carbon structure of the lignite chars with increasing the treatment temperature from 773 to 1673 K. Reactivity indexes of the demineralized chars reacting with both CO2 and NO were found to increase with increasing the treatment temperature, implying that the structure ordering did result in the losses of the reactivities. Higher reactivities of the non-demineralized chars indicated the catalytic role of inorganic matter in the reactions with both gases. ID1/IG and IG/IALL had good linear correlations with the reactivities particularly of the demineralized chars if considering the structure evolution behaviors at lower and higher temperatures, respectively. ID3/(IG + ID2 + ID3) was found to have fairly good linear correlations with the reactivity indexes of the lignite chars generated over the whole temperature range.  相似文献   

13.
Carbon capture and sequestration (CCS) is one of the most promising technologies for the reduction of carbon dioxide (CO2) concentration in the atmosphere, so that global warming can be controlled and eventually eliminated. A crucial part in the CCS process design is the model that is used to calculate the physical properties (thermodynamic, transport etc.) of pure CO2 and CO2 mixtures with other components.  相似文献   

14.
针对山西省资源禀赋、地理特征、能源消费结构和污染状况,结合CO2捕集与封存技术(CCS)发展现状,分析了山西省CO2排放源及封存区状况,指出在山西省实施CO2捕集与封存技术潜力巨大,应用前景广阔,对于碳减排和应对气候变化具有重要意义,提出通过政策及法律法规建设、资金及人才储备、合作机制建设、示范项目建设等来进一步推动山西实施CO2捕集与封存技术。  相似文献   

15.
Xinxin Li 《Polymer》2009,50(17):4182-6116
The isothermal swelling of polymer thin films by a supercritical fluid does not increase monotonically with increasing chemical potential (pressure), but rather a maximum in swelling is generally observed near the critical pressure. A reactive templating approach utilizing the condensation of silica within hydrophilic domains of a swollen amphiphilic polymer film enables visualization of the qualitative concentration profile of CO2 by the changes in the size of hydrophobic domains (pores) with cross sectional TEM microscopy; specifically, isothermal swelling of poly(ethylene oxide-propylene oxide-ethylene oxide) films by CO2 at 60 °C is examined. Films that contain thickness gradients are used to avoid any uncertainties in the impact of thickness due to variations in the temperature or pressure during the silica modification. A uniform pore size (local swelling) is observed for all film thicknesses when the pressure is outside of the anomalous maximum in the film swelling, except for a small increase at the buried interface due to preferential adsorption of CO2 to the native silicon oxide surface of the substrate. However at this swelling maximum, a gradient in the pore size is observed at both interfaces. These swelling gradients at interfaces appear to be responsible for the anomalous maximum in thin films. As the film thickness increases beyond 350 nm, there is a decrease in the maximum swelling at the free interface.  相似文献   

16.
Carbon capture, transport and storage (CCS) is a very active field of research, because of its potential to make large reductions of emissions from fossil fuel combustion relevant to climate change. This paper reviews the recent and current work on practical injections of CO2 as research tests for storage projects and specifically focuses on industrial-scale or relevant injections into saline formations (about 1 Mt CO2 per year). All injection projects around the world have been reviewed, and 20 are reported to compile, depth, reservoir quality and injectivity, cost, and rate. This shows that testing of injection is concentrated onshore; however the projects with the highest total CO2 storage estimate are offshore. Pipeline transport systems are mostly used for the large projects. Formations targeted in the injection process are sandstone or carbonate. In the majority of cases initial projections of injectivity are confirmed in tests. A variety of monitoring techniques are used in all projects, these have detected CO2, but have not shown unexpected CO2 movement. Practical experiences of CO2 injection operations therefore suggest that similar operations can be successfully carried out in the saline formations of the UK North Sea and other large sedimentary basins.  相似文献   

17.
The theoretical and experimental feasibility of direct conversion of CH4 and CO2 to acetic acid by an isothermal step-wise route over Pd/SiO2 and Rh/SiO2 catalysts was investigated. The methyl radical formation from CH4 dissociation and CO2 inserting into the intermediate are regarded as two limiting steps. Preliminary experimental results have shown that the following step-wise route can circumvent the thermodynamic limitation of this direct synthesis at low temperatures. Pd catalysts are more active than Rh catalysts at 170 °C and 200 °C, while formic acid is only produced on Pd catalysts. The optimum contact time of CH4 and CO2 with catalysts is 1 min under the experimental conditions. And there is no apparent deactivation resulting from carbon deposition for catalysts during the successive reaction cycles.  相似文献   

18.
Mesoporous nanocrystalline zirconia with high-surface area and pure tetragonal crystalline phase has been prepared by the surfactant-assisted route, using Pluronic P123 block copolymer surfactant. The synthesized zirconia showed a surface area of 174 m2 g−1 after calcination at 700 °C for 4 h. The prepared zirconia was employed as a support for nickel catalysts in dry reforming reaction. It was found that these catalysts possessed a mesoporous structure and even high-surface area. The activity results indicated that the nickel catalyst showed stable activity for syngas production with a decrease of about 4% in methane conversion after 50 h of reaction. Addition of promoters (CeO2, La2O3 and K2O) to the catalyst improved both the activity and stability of the nickel catalyst, without any decrease in methane conversion after 50 h of reaction.  相似文献   

19.
CO2 reforming of CH4 over stabilized mesoporous Ni-CaO-ZrO2 composites   总被引:1,自引:0,他引:1  
Shuigang Liu  Lianxiu Guan  Junping Li  Wei Wei  Yuhan Sun 《Fuel》2008,87(12):2477-2481
Mesoporous Ni-CaO-ZrO2 nanocomposites with high thermal stability were designed and employed in the CO2/CH4 reforming. The nanocomposites with appropriate Ni/Ca/Zr molar ratios exhibited excellent activity and prominent coking resistivity. The Ni crystallites were effectively controlled under the critical size for coke formation in such nanocomposites. It was found that low Ni content resulted in high metal dispersion and good catalytic performance. Moreover, the basicity of the matrices improved the chemisorption of CO2 and promoted the gasification of deposited coke on the catalyst.  相似文献   

20.
The hydrothermal reactivity of swelling clays has relevant implications on the geological storage of radioactive waste and greenhouse gases because the clay geo-materials have been proposed as engineered or natural barriers due to their low permeability in confined systems and their high capacity to sequester ions. In the present study, the iron–montmorillonite–salt solution–CO2 interactions were investigated under high gas pressure (200 bar) at 150 °C.Various chemical processes were characterized at the solid–fluid interfaces such as the dissolution of montmorillonite fine particles and oxidative-dissolution of elemental iron. The ionic supersaturation of solution and possibly the surface complexation in the system produced the precipitation of hematite nanoparticles (< 200 nm) after 15 days of solid–fluid contact. The hematite nanoparticles dispersed and/or coagulated on the clay matrix caused a stable red coloration of the montmorillonite composite. We assume that initial dissolved oxygen was progressively consumed in this closed-stirred system favouring the presence of divalent iron (in-situ change of redox conditions) and then leading the surface precipitation of iron carbonate nanocrystals (< 500 nm) after 60 days of solid–fluid contact. Thus, an atypical mineral coexistence of hematite–iron carbonate was observed in our system. A qualitative comparison with the blank experiment, i.e. at the same PT conditions, but without CO2 injection, suggested that the carbon dioxide increased the hydrothermal reactivity of montmorillonite because the hematite and iron carbonate formation were not observed after the same reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号